Semantic Segmentation on Remotely Sensed Imagery
Teerapong Panboonyuen
This work introduces novel decoder designs within the Transformer-based Swin architecture, tailored for semantic segmentation tasks in high-resolution remote sensing images. By enhancing global contextual understanding and preserving fine-grained spatial detail, our methods outperform conventional CNN-based decoders on multiple aerial benchmarks.
corpus_name/ โโโ train/ โโโ train_labels/ โโโ val/ โโโ val_labels/ โโโ test/ โโโ test_labels/
Include our_class_dict.csv
to map class names to RGB colors.
name,r,g,b Agriculture,255,255,155 Forest,56,168,0 Urban,255,0,0 Water,0,122,255 Miscellaneous,183,140,31
# Install dependencies pip install tensorflow opencv-python # Train model python train.py --dataset corpus_name --model swin_decoder # Test model python test.py --dataset corpus_nameTensorFlow GPU Setup
@article{panboonyuen2025transformer, title={Transformer-Based Decoder Designs for Semantic Segmentation on Remotely Sensed Images}, author={Panboonyuen, Teerapong}, journal={Remote Sensing Letters}, year={2025}, note={Under review} }