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Introduction
• Semantic segmentation of remotely-sensed 

corpora 
• Aerial (or Very-High Resolution, VHR) images 
• Satellite (or Medium-Resolution, MR) images

• Convolution Neural Network (CNNs)
• Classification of images has becomes very 

efficient and smart
• Can create the pre-trained deep CNNs with fixed 

parameters are transferred for remote scene 
classification

• Overcomes the traditional method (K-means, 
Neural Nets) on Remote Sensing corpora



Page 6

Introduction
• Semantic segmentation of remotely-sensed 

corpora 
• Aerial (or Very-High Resolution, VHR) images 
• Satellite (or Medium-Resolution, MR) images

• Convolution Neural Network (CNNs)
• Classification of images has becomes very 

efficient and smart
• Can create the pre-trained deep CNNs with fixed 

parameters are transferred for remote scene 
classification

• Overcomes the traditional method (K-means, 
Neural Nets) on Remote Sensing corpora



Page 7

Introduction
• Semantic segmentation of remotely-sensed 

corpora 
• Aerial (or Very-High Resolution, VHR) images 
• Satellite (or Medium-Resolution, MR) images

• Convolution Neural Network (CNNs)
• Classification of images has becomes very 

efficient and smart
• Can create the pre-trained deep CNNs with 

fixed parameters are transferred for remote 
scene classification

• Overcomes the traditional method (K-means, 
Neural Nets) on Remote Sensing corpora



Page 8

Introduction (cont.)
• It has been implemented in many applications in various 

domains
• Urban planning, map updates, route optimization, and navigation
• Allowing us to better understand the domain’s images and create 

important real-world applications

• It is mainly used for the agricultural purpose
• Crop mapping, forest inventory, land cover

• The most widely used satellite for agriculture is LANDSAT 8 
• It contains operational land imager (OLI) and thermal infrared sensor (TIRS)
• It covers the landmass, agriculture and remote areas
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Introduction (cont.)

https://earthobservatory.nasa.gov/images/145498/uptick-in-amazon-fire-activity-in-2019

• It has been implemented in many applications in various 
domains
• Urban planning, map updates, route optimization, and navigation
• Allowing us to better understand the domain’s images and create 

important real-world applications

• It is mainly used for the agricultural purpose
• Crop mapping, forest inventory, land cover

• The most widely used satellite for agriculture is LANDSAT 8 
• It contains operational land imager (OLI) and thermal infrared sensor 

(TIRS)
• It covers the landmass, agriculture and remote areas

https://earthobservatory.nasa.gov/images/145498/uptick-in-amazon-fire-activity-in-2019
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Public and Private Corpora
Public corpus (ISPRS Vaihingen Corpus)
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Public and Private Corpora
Public corpus (ISPRS Vaihingen Corpus)
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• There are 33 images of about 2,500 × 2,000 pixels at a ground sampling distance (GSD) of about 9 cm in 
the image data

• We randomly split the 16 images with ground truth available 
• into a training set of 10 images and a validation set of 6 images

• 4 tiles (Image Numbers 5, 7, 23, and 30) were removed from the training set as the testing corpus

Public and Private Corpora
Public corpus (ISPRS Vaihingen Corpus)
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Public and Private Corpora
Private corpus (GISTDA Nan Province Corpus)
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• The dataset is obtained from Landsat-8 satellite consisting of 1,012 satellite images
• Bands 5, 4, and 3 are used
• Capture at Nan, a province in Thailand
• Medium resolution (16,800 × 15,800)
• The 1,012 images were split into 800 training and 112 validation images with publicly available 

annotation, as well as 100 testing images with annotations withheld

Public and Private Corpora
Private corpus (GISTDA Nan Province Corpus)
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Public and Private Corpora
Private corpus (GISTDA ISAN Zone Corpus)
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• For the Dissertation, we select LC129048, LC130050 zone as the LC3W corpus

Public and Private Corpora
Private corpus (GISTDA ISAN Zone Corpus)
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• For the Dissertation, we select LC129048, LC130050 zone as the LC3W corpus
• Medium resolution (15,376x15,872) pixels
• 764 training
• 112 validating
• 100 testing 

Public and Private Corpora
Private corpus (GISTDA ISAN Zone Corpus)
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Statement of Problem (1) Very High Resolution 
Input Image Target Image Baseline Method [10]

[10] Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., & Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 78-95.

Problem: 
False Positive

Problem: 
False Negative
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Statement of Problem (2) Medium Resolution
Input Image Target Image Baseline Method [10]

[10] Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., & Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 78-95.

Problem: 
False Positive

Problem: 
False Negative
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Statement of Problem (3) Medium Resolution
Input Image Target Image Baseline Method [10]

[10] Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., & Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 78-95.

Problem: 
False Positive

Problem: 
False Negative

Color Class

Corn

Pineapple

Para Rubber

Miscellaneous
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Statement of Problem (4)
• False Positive Problem

• High Level (Sharp Boundary Object) such as Building Object, Rubber Tree (Zone)

• False Negative Problem
• Rare Class (Low-Level Class) such as Water Class

• Motivation
• This leads to some inconsistent results that suffer from accuracy performance
• The primary challenge of this remote sensing task is a lack of training data
• This, in fact, has become a motivation of this work
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Outline | Related Theory
• Introduction
• Related Theory
• Related Works
• Methodology (Proposed Method)
• Experimental Results
• Objectives and Procedure
• Conclusions
• Publication and Reference
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Related Theory
• (1) Transfer Learning
• (2) Channel Attention
• (3) Feature Fusion
• (4) Depthwise Convolution
• (5) Design CNNs
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Related Theory
• (1) Transfer Learning
• (2) Channel Attention
• (3) Feature Fusion
• (4) Depthwise Convolution
• (5) Design CNNs

https://machinelearningmastery.com/transfer-learning-for-deep-learning/

"Transfer learning is the improvement of learning in 
a new task through the transfer of knowledge from 
a related task that has already been learned."

https://machinelearningmastery.com/transfer-learning-for-deep-learning/
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Related Theory
• (1) Transfer Learning
• (2) Channel Attention
• (3) Feature Fusion
• (4) Depthwise Convolution
• (5) Design CNNs

Refers to Squeeze-and-Excitation Networks and BiseNet

• Attention is helpful to focus on what we want
• We utilize channel attention to select the 

important features

Self Attention

One word “attends” to other words in the same sentence differently.
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Related Theory
• (1) Transfer Learning
• (2) Channel Attention
• (3) Feature Fusion
• (4) Depthwise Convolution
• (5) Design CNNs

• Attention is helpful to focus on what we want
• We utilize channel attention to select the 

important features

Self Attention

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
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Related Theory
• (1) Transfer Learning
• (2) Channel Attention
• (3) Feature Fusion
• (4) Depthwise Convolution
• (5) Design CNNs

• The features of the two paths are different in level of feature 
representation

• Simply sum up low and high features
• Utilization of low-level features for objects refinement

Tai, Lei, et al. "PCA-aided fully convolutional networks for semantic segmentation of multi-channel fMRI." 2017 18th 
International Conference on Advanced Robotics (ICAR). IEEE, 2017.

Low Level Feature

High Level Feature

Feature Fusion (1)
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Related Theory
• (1) Transfer Learning
• (2) Channel Attention
• (3) Feature Fusion
• (4) Depthwise Convolution
• (5) Design CNNs

• The features of the two paths are different in level of feature 
representation

• Fuse spatial path (low level features) and context path (high 
level feature) together

Low Level Feature

High Level Feature

Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018). Bisenet: Bilateral segmentation network for real-time 
semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 325-341).

Feature Fusion (2)
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Related Theory
• (1) Transfer Learning
• (2) Channel Attention
• (3) Feature Fusion
• (4) Depthwise Convolution
• (5) Design CNNs

• Filters and image have been broken into three different 
channels and then convolved separately and stacked thereafter

https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-
convolution-37346565d4ec

Depth-wise Convolution

https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec
https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec
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Related Theory
• (1) Transfer Learning
• (2) Channel Attention
• (3) Feature Fusion
• (4) Depthwise Convolution
• (5) Design CNNs

• XXX

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Point-wise Convolution

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215


Page 32

Related Theory
• (1) Transfer Learning
• (2) Channel Attention
• (3) Feature Fusion
• (4) Depthwise Convolution
• (5) Design CNNs

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Dilated Convolution (Atrous Convolution)

• Multi-scale context aggregation by dilated convolutions

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
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Dilated Convolution (Atrous Convolution)

• Multi-scale context aggregation by dilated convolutions
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Related Theory
• (4) Depthwise Convolution

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Dilated Convolution (Atrous Convolution)

• Multi-scale context aggregation by dilated convolutions
• 3×3 Depthwise separable convolution decomposes a standard convolution into 
• (a) a depthwise convolution (applying a single filter for each input channel) 
• (b) a pointwise convolution (combining the outputs from depthwise convolution across channels). 
• In this example, we explore atrous separable convolution where atrous convolution is adopted in the 

depthwise convolution, as shown in (c) with rate = 2.

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
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Related Theory
• (1) Transfer Learning
• (2) Channel Attention
• (3) Feature Fusion
• (4) Depthwise Convolution
• (5) Design CNNs

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
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Related Theory
• (1) Transfer Learning
• (2) Channel Attention
• (3) Feature Fusion
• (4) Depthwise Convolution
• (5) Design CNNs

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling

Width Scaling

Depth Scaling
Compound Scaling

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
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Related Theory
• (1) Transfer Learning
• (2) Channel Attention
• (3) Feature Fusion
• (4) Depthwise Convolution
• (5) Design CNNs

Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018). Bisenet: Bilateral segmentation network for real-time 
semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 325-341).

VGG Style
(Depth Scaling)

U-Shape Style
(Width Scaling)

Context Path Style
(Compound Scaling)

Width ScalingDept Scaling Compound Scaling
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Outline | Related Works
• Introduction
• Related Theory
• Related Works
• Methodology (Proposed Method)
• Experimental Results
• Objectives and Procedure
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Related Works
• (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)
• (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

• CamVid Corpus (http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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Related Works
• (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)

• Fully Convolutional Networks by Long, J. et. al. (CVPR 2015)
• F1-Score on Test Set is 80.8%

• Segnet: A Deep Convolutional Encoder-Decoder Architecture by Badrinarayanan, V. et al. (PAMI, 2017)
• F1-Score on Test Set is 84.7%

• Learning Deconvolution Network by Noh, H. et al. (CVPR 2015)
• F1-Score on Test Set is 83.5%

• Gated Convolutional Neural Network by Wang, H. et al. (Remote Sensing 2017)
• F1-Score on Test Set is 85.2%

• Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing, 2018)
• F1-Score on Test Set is 85.4%
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Related Works
• (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)

• Fully Convolutional Networks by Long, J. et. al. (CVPR 2015)
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Related Works
• (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)
• (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

• CamVid Corpus (http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)

Method Imp surf Building Low veg Tree Car F1-score
FCN-8s {Long, 2015 #6} 0.871 0.918 0.752 0.861 0.638 0.808

SegNet {Badrinarayanan, 2017 #7} 0.867 0.891 0.763 0.839 0.657 0.847

DeconvNet {Noh, 2015 #8} 0.891 0.932 0.814 0.857 0.684 0.835

GSN {Wang, 2017 #9} 0.892 0.945 0.749 0.875 0.798 0.852

Encoder-Decoder {Liu, 2018 #10} 0.872 0.893 0.841 0.914 0.815 0.854 Winner

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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Related Works
• (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)

• Fully Convolutional Networks by Long, J. et. al. (CVPR 2015)
• F1-Score on Test Set is 80.8%

• Segnet: A Deep Convolutional Encoder-Decoder Architecture 
• by Badrinarayanan, V. et al. (PAMI, 2017)

• F1-Score on Test Set is 75.5%

• Learning Deconvolution Network by Noh, H. et al. (CVPR 2015)
• F1-Score on Test Set is 83.5%

Point of view in the previous work
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Related Works
• (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)

• Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing)
• F1-Score on Test Set is 85.4% (Winner)

Point of view in the previous work
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Related Works
• (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)
• (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

• CamVid Corpus (http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/


Page 52

CamVid Corpus

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

32 semantic classes 
The Cambridge-driving Labeled Video Database 

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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Related Works
• (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

• Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)
• F1-Score on Test Set is 80.8%

• DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017) 
• F1-Score on Test Set is 75.1%

• Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018) 
• F1-Score on Test Set is 86.1%

• Encoder-Decoder (DeepLabV3) by Chen, L. C. (ECCV 2018) 
• F1-Score on Test Set is 67.2%

• Bilateral Network (Bisenet) by Yu, C. (ECCV 2018) 
• F1-Score on Test Set is 83.1%
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• Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)
• F1-Score on Test Set is 80.8%

• DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017) 
• F1-Score on Test Set is 75.1%

• Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018) 
• F1-Score on Test Set is 86.1%

• Encoder-Decoder (DeepLabV3) by Chen, L. C. (ECCV 2018) 
• F1-Score on Test Set is 67.2%

• Bilateral Network (Bisenet) by Yu, C. (ECCV 2018) 
• F1-Score on Test Set is 83.1%
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Related Works
• (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)
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• Encoder-Decoder (DeepLabV3) by Chen, L. C. (ECCV 2018) 
• F1-Score on Test Set is 67.2%
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• F1-Score on Test Set is 83.1%

Winner is Global Convolution Network (GCN)
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Related Works
• (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)
• (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

• CamVid Corpus (http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)

Deep Learning Model Precision Recall F1-Score
PSPNet {Zhao, 2017 #1} 0.74 0.74 0.74

DenseNet (Tiramisu) {Badrinarayanan, 2017 #2} 0.74 0.77 0.75
GCN {Peng, 2018 #3} 0.85 0.87 0.86

DeepLabV3 {Chen, 2018 #4} 0.72 0.63 0.67
BiseNet {Yu, 2018 #5} 0.84 0.82 0.83

Winner

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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Related Works
• (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

• Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018) 
• F1-Score on Test Set is 86.1% (Winner)

Point of view in the previous work
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Related Works
• (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

• Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018) 
• F1-Score on Test Set is 86.1% (Winner)

Point of view in the previous work

(A) and fails to hold the entire object if the input resized to a larger scale (B). As a comparison, their Global Convolution Network significantly enlarges the VRF (C).

** Valid Receptive Field (VRF)
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Related Works
• (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

• Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018) 
• F1-Score on Test Set is 86.1% (Winner)

Point of view in the previous work

Effect of GCN and Boundary Refinement

Solve: False Negative 
and False Positive
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Related Works
• (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

• Bilateral Network (Bisenet) by Yu, C. (ECCV 2018) 
• F1-Score on Test Set is 83.1% (first runner-up)

Point of view in the previous work
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Related Works
• (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

• Bilateral Network (Bisenet) by Yu, C. (ECCV 2018) 
• F1-Score on Test Set is 83.1% (first runner-up)

Point of view in the previous work

Problem: False Positive
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Recap: Each Techniques from Related Theory and Work
• From Remote Sensing Challenge, Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of 

Photogrammetry and Remote Sensing 2018) is the winner.
• From CamVid Challenge, Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018) is 

the winner.
• Modern Technique from modern deep learning researches: 

• Global Convolutional (Large Kernel Matter, Dynamic Kernel Size)
• Channel Attention
• Domain Specific Transfer Learning
• Feature Fusion
• Depthwise Atrous Convolution
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Outline | Methodology (Proposed Method)
• Introduction
• Related Theory
• Related Works
• Methodology (Proposed Method)
• Experimental Results
• Objectives and Procedure
• Conclusions
• Publication and Reference
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16x16x2048

GCN
16,21 A = Channel Attention Block

P1

P2

P3

FF

FF

FF

FF

Satellite

FF = Feature Fusion Block

P1: Modification of backbone architecture
P2: Applying the Channel Attention Block
P3: Using concept of Transfer Learning
P4: Encoders Matter (Feature Fusion)P4

GCN = Global Conv Block BR = Boundary Refinement Block 
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Proposed Method P1
Backbone

P2
Attention

(A)

P3
Transfer Learning

(TL)

P4
Feature Fusion

(FF)

P5
Depthwise Atrous

(DA)

In CNNs, it is found that the low-level features can usually be 
captured by the shallow layers (Zeiler and Fergus, 2014).



GCN = Global Conv Block BR = Boundary Refinement Block 
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Proposed Method P1
Backbone

P2
Attention

(A)

P3
Transfer Learning

(TL)

P4
Feature Fusion

(FF)

P5
Depthwise Atrous

(DA)

DA = Depthwise Atrous

ModelBackbone

GCN
128,21 BR ARes-2

128x128x256

P2

FF

Satellite
P1: Modification of backbone architecture
P2: Applying the Channel Attention Block
P3: Using concept of Transfer Learning
P4: Encoders Matter (Feature Fusion)
P5: Depthwise Atrous (DA)

+ BR

+ BR
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Proposed Method P1
Backbone

P2
Attention

(A)

P3
Transfer Learning

(TL)

P4
Feature Fusion

(FF)

P5
Depthwise Atrous

(DA)

A = Channel Attention Block

FF = Feature Fusion Block

GCN = Global Conv Block

BR = Boundary Refinement Block 

DA = Depthwise Atrous

TL = Transfer Learning



A = Channel Attention Block

FF = Feature Fusion Block
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Proposed Method P1
Backbone

P2
Attention

(A)

P3
Transfer Learning

(TL)

P4
Feature Fusion

(FF)

P5
Depthwise Atrous

(DA)

GCN = Global Conv Block

BR = Boundary Refinement Block 

DA = Depthwise Atrous

TL = Transfer Learning



A = Channel Attention Block

FF = Feature Fusion Block
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Proposed Method P1
Backbone

P2
Attention

(A)

P3
Transfer Learning

(TL)

P4
Feature Fusion

(FF)

P5
Depthwise Atrous

(DA)

GCN = Global Conv Block

BR = Boundary Refinement Block 

DA = Depthwise Atrous

TL = Transfer Learning

The Whole of Proposed Method : Encoders Matter



Page 96

Outline | Experimental Results
• Introduction
• Related Theory
• Related Works
• Methodology (Proposed Method)
• Experimental Results
• Objectives and Procedure
• Conclusions
• Publication and Reference



Evaluation Corpus 1
ISPRS Vaihingen

Corpus 2
Nan, Thailand

Corpus 3
Isan, Thailand

Abbreviations on our proposed deep learning methods Performance Metrics

Abbreviation Description
A Channel Attention Block

GCN Global Convolutional Network
GCN50 Global Convolutional Network with ResNet50
GCN101 Global Convolutional Network with ResNet101
GCN152 Global Convolutional Network with ResNet52

TL Domain-Specific Transfer Learning
FF Feature Fusion Module
DA Depthwise Atrous Convolution 
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Recap: Each Methods from Proposed 
P1

Backbone

P2
Attention

(A)

P3
Transfer Learning

(TL)

P4
Feature Fusion

(FF)

P5
Depthwise Atrous

(DA)A = Channel Attention Block

FF = Feature Fusion Block

GCN = Global Conv Block

DA = Depthwise Atrous

TL = Transfer Learning

• Experiment 1: How it impacts modern and over-deeper backbone?
• Experiment 2: Chanel Attention
• Experiment 3: Deep CNNs with Domain Specific Transfer Learning
• Experiment 4: Feature Fusion
• Experiment 5: Depthwise Atrous Convolution
• Three data sets: two private corpora from Landsat-8 satellite (Nan and Isan Region) 

and one public benchmark from the “ISPRS Vaihingen” challenge.



1st Corpus
Nan, Thailand (Medium Resolution Corpus)



Evaluation Corpus 1
Nan, Thailand

Corpus 2
ISPRS Vaihingen

Corpus 3
Isan, Thailand

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.857 0.894 0.874

Proposed - Res50 GCN 0.881 0.872 0.875

- Res101 GCN 0.862 0.897 0.877

- Res152 GCN 0.892 0.878 0.884

- Res152 GCN-A 0.907 0.929 0.917

TL Res152 GCN-A 0.921 0.918 0.918

TL Res152 GCN-A-FF 0.930 0.924 0.927

TL Res152 GCN-A-FF-DA 0.934 0.939 0.936

Page 100Result: Our proposed method yields a higher F1 Score from baseline method at 6.2%



Evaluation Corpus 1
Nan, Thailand

Corpus 2
ISPRS Vaihingen

Corpus 3
Isan, Thailand

• Each class

Method Model Agri Forest Misc Urban Water

Baseline DCED 0.982 0.962 0.763 0.854 0.725

Proposed GCN50 0.967 0.948 0.817 0.881 0.792

GCN101 0.976 0.929 0.685 0.929 0.785

GCN152 0.976 0.950 0.823 0.913 0.797

GCN152-A 0.984 0.944 0.882 0.899 0.822

GCN152-TL-A 0.974 0.953 0.864 0.934 0.828

GCN152-TL-A-FF 0.986 0.982 0.918 0.956 0.844

GCN152-TL-A-FF-DA 0.989 0.957 0.934 0.949 0.868
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Evaluation Corpus 1
Nan, Thailand

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.857 0.894 0.874
Proposed - Res50 GCN 0.881 0.872 0.875

- Res101 GCN 0.862 0.897 0.877

- Res152 GCN 0.892 0.878 0.884
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Experiment 1: 
How it impacts modern and over-deeper backbone?

• GCN50 overcame DECD ~ 0.116 % F1
• GCN152 overcame DECD ~ 1.043 % F1



Evaluation Corpus 1
Nan, Thailand

• Each class

Method Model Agri Forest Misc Urban Water

Baseline DCED 0.982 0.962 0.763 0.854 0.725

Proposed GCN50 0.967 0.948 0.817 0.881 0.792

GCN101 0.976 0.929 0.685 0.929 0.785

GCN152 0.976 0.950 0.823 0.913 0.797
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• GCN Family won DECD 4 out of 5 classes

Experiment 1: 
How it impacts modern and over-deeper backbone?



Evaluation Corpus 1
Nan, Thailand
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Experiment 1: 
How it impacts modern and over-deeper backbone?

Input Image Target Image Baseline Method [10] GCN50



Evaluation Corpus 1
Nan, Thailand
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Experiment 1: 
How it impacts modern and over-deeper backbone?

Target Image GCN50 GCN101 GCN152



Evaluation Corpus 1
Nan, Thailand

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.857 0.894 0.874

Proposed - Res152 GCN 0.892 0.878 0.884

- Res152 GCN-A 0.907 0.929 0.917
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Experiment 2: 
Chanel Attention

• GCN152-A overcame DECD ~ 4.332 % F1
• GCN152-A overcame GCN152 ~ 3.288 % F1



Evaluation Corpus 1
Nan, Thailand

• Each class

Method Model Agri Forest Misc Urban Water

Baseline DCED 0.982 0.962 0.763 0.854 0.725

Proposed GCN152 0.976 0.950 0.823 0.913 0.797

GCN152-A 0.984 0.944 0.882 0.899 0.822
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• Our Proposed won DECD 4 out of 5 classes

Experiment 2: 
Chanel Attention



Evaluation Corpus 1
Nan, Thailand
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Experiment 2: 
Chanel Attention

Target Image Baseline Method [10 GCN152 GCN152-A



Evaluation Corpus 1
Nan, Thailand

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.857 0.894 0.874

Proposed - Res152 GCN-A 0.907 0.929 0.917

TL Res152 GCN-A 0.921 0.918 0.918
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Experiment 3: 
Deep CNNs with Domain Specific Transfer Learning

• GCN152-A-TL overcame DECD ~ 4.446 % F1
• GCN152-A-TL overcame GCN152-A ~ 0.114 % F1



Evaluation Corpus 1
Nan, Thailand

• Each class

Method Model Agri Forest Misc Urban Water

Baseline DCED 0.982 0.962 0.763 0.854 0.725

Proposed GCN152-A 0.984 0.944 0.882 0.899 0.822

GCN152-TL-A 0.974 0.953 0.864 0.934 0.828
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• Our Proposed won DECD 4 out of 5 classes

Experiment 3: 
Deep CNNs with Domain Specific Transfer Learning



Evaluation Corpus 1
Nan, Thailand
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Experiment 3: 
Deep CNNs with Domain Specific Transfer Learning

Target Image Baseline Method [10 GCN152-A GCN152-A-TL



Evaluation Corpus 1
Nan, Thailand

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.857 0.894 0.874

Proposed TL Res152 GCN-A 0.921 0.918 0.918

TL Res152 GCN-A-FF 0.930 0.924 0.927
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Experiment 4: 
Feature Fusion

• GCN152-A-TL-FF overcame DECD ~ 5.288 % F1
• GCN152-A-TL-FF overcame GCN152-A-TL ~ 0.843 % F1



Evaluation Corpus 1
Nan, Thailand

• Each class

Method Model Agri Forest Misc Urban Water

Baseline DCED 0.982 0.962 0.763 0.854 0.725

Proposed GCN152-TL-A 0.974 0.953 0.864 0.934 0.828

GCN152-TL-A-FF 0.986 0.982 0.918 0.956 0.844
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• Our Proposed won DECD 5 out of 5 classes

Experiment 4: 
Feature Fusion



Evaluation Corpus 1
Nan, Thailand
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Experiment 4: 
Feature Fusion

Target Image Baseline Method [10 GCN152-A-TL GCN152-A-TL-FF



Evaluation Corpus 1
Nan, Thailand

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.857 0.894 0.874

Proposed TL Res152 GCN-A-FF 0.930 0.924 0.927

TL Res152 GCN-A-FF-DA 0.934 0.939 0.936

Page 115

Experiment 5: 
Depthwise Atrous Convolution

• Precision
• Recall
• F1-score

• GCN152-A-TL-FF-DA overcame DECD ~ 6.221 % F1
• GCN152-A-TL-FF-DA overcame GCN152-A-TL-FF ~ 0.933 % F1



Evaluation Corpus 1
Nan, Thailand

• Each class

Method Model Agri Forest Misc Urban Water

Baseline DCED 0.982 0.962 0.763 0.854 0.725

Proposed GCN152-TL-A-FF 0.986 0.982 0.918 0.956 0.844

GCN152-TL-A-FF-DA 0.989 0.957 0.934 0.949 0.868
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• Our Proposed won DECD 5 out of 5 classes

Experiment 5: 
Depthwise Atrous Convolution



Evaluation Corpus 1
Nan, Thailand
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Experiment 5: 
Depthwise Atrous Convolution

Target Image Baseline Method [10 GCN152-A-TL-FF GCN152-A-TL-FF-DA



Evaluation Corpus 1
Nan, Thailand Summary

Method Model F1 Score Increase

Baseline DCED 0.874

P1
Enhanced GCN +

Deeper Head Network
0.884 1.043 %

P2 + Attention 0.917 3.288 %

P3 + Transfer Learning 0.918 0.114 %

P4 + Feature Fusion 0.927 0.843 %

P5
+ Depthwise Atrous 

Convolution
0.936 0.933%

Page 118

The most impactful method: 
Channel Attention



2nd Corpus
ISPRS Vaihingen



Evaluation Corpus 1
Nan, Thailand

Corpus 2
ISPRS Vaihingen

Corpus 3
Isan, Thailand

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.867 0.849 0.854

Proposed - Res50 GCN 0.872 0.852 0.858

- Res101 GCN 0.850 0.854 0.866

- Res152 GCN 0.873 0.864 0.868

- Res152 GCN-A 0.875 0.869 0.874

TL Res152 GCN-A 0.897 0.877 0.881

TL Res152 GCN-A-FF 0.896 0.904 0.905

TL Res152 GCN-A-FF-DA 0.923 0.900 0.911

Page 120Result: Our proposed method yields a higher F1 Score from baseline method at 5.7%



Evaluation Corpus 1
Nan, Thailand

Corpus 2
ISPRS Vaihingen

Corpus 3
Isan, Thailand

• Each class

Method Model Imps Building Low veg Tree Car

Baseline DCED 0.872 0.893 0.841 0.914 0.815

Proposed GCN50 0.876 0.873 0.857 0.953 0.803

GCN101 0.941 0.913 0.742 0.904 0.699

GCN152 0.810 0.963 0.895 0.912 0.806

GCN152-A 0.886 0.928 0.811 0.895 0.820

GCN152-TL-A 0.871 0.916 0.890 0.918 0.874

GCN152-TL-A-FF 0.928 0.976 0.926 0.968 0.898

GCN152-TL-A-FF-DA 0.907 0.979 0.927 0.972 0.910
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Evaluation Corpus 2
ISPRS Vaihingen

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.867 0.849 0.854
Proposed - Res50 GCN 0.872 0.852 0.858

- Res101 GCN 0.850 0.854 0.866

- Res152 GCN 0.873 0.864 0.868
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Experiment 1: 
How it impacts modern and over-deeper backbone?

• GCN50 overcame DECD ~ 0.386 % F1
• GCN152 overcame DECD ~ 1.366 % F1



Evaluation Corpus 2
ISPRS Vaihingen

• Each class

Method Model Agri Forest Misc Urban Water

Baseline DCED 0.872 0.893 0.841 0.914 0.815

Proposed GCN50 0.876 0.873 0.857 0.953 0.803

GCN101 0.941 0.913 0.742 0.904 0.699

GCN152 0.810 0.963 0.895 0.912 0.806
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• GCN Family won DECD 5 out of 5 classes

Experiment 1: 
How it impacts modern and over-deeper backbone?



Evaluation Corpus 2
ISPRS Vaihingen
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Experiment 1: 
How it impacts modern and over-deeper backbone?

Input Image Target Image Baseline Method [10] GCN50



Evaluation Corpus 2
ISPRS Vaihingen
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Experiment 1: 
How it impacts modern and over-deeper backbone?

Target Image GCN50 GCN101 GCN152



Evaluation Corpus 2
ISPRS Vaihingen

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.867 0.849 0.854

Proposed - Res152 GCN 0.873 0.864 0.868

- Res152 GCN-A 0.875 0.869 0.874
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Experiment 2: 
Chanel Attention

• GCN152-A overcame DECD ~ 1.916 % F1
• GCN152-A overcame GCN152 ~ 0.55 % F1



Evaluation Corpus 2
ISPRS Vaihingen

• Each class

Method Model Agri Forest Misc Urban Water

Baseline DCED 0.872 0.893 0.841 0.914 0.815

Proposed GCN152 0.810 0.963 0.895 0.912 0.806

GCN152-A 0.886 0.928 0.811 0.895 0.820
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• Our Proposed won DECD 4 out of 5 classes

Experiment 2: 
Chanel Attention



Evaluation Corpus 1
Nan, Thailand
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Experiment 2: 
Chanel Attention

Target Image Baseline Method [10 GCN152 GCN152-A



Evaluation Corpus 2
ISPRS Vaihingen

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.867 0.849 0.854

Proposed - Res152 GCN-A 0.875 0.869 0.874

TL Res152 GCN-A 0.897 0.877 0.881
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Experiment 3: 
Deep CNNs with Domain Specific Transfer Learning

• GCN152-A-TL overcame DECD ~ 2.642 % F1
• GCN152-A-TL overcame GCN152-A ~ 0.726 % F1



Evaluation Corpus 2
ISPRS Vaihingen

• Each class

Method Model Agri Forest Misc Urban Water

Baseline DCED 0.872 0.893 0.841 0.914 0.815

Proposed GCN152-A 0.886 0.928 0.811 0.895 0.820

GCN152-TL-A 0.871 0.916 0.890 0.918 0.874
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• Our Proposed won DECD 5 out of 5 classes

Experiment 3: 
Deep CNNs with Domain Specific Transfer Learning



Evaluation Corpus 2
ISPRS Vaihingen
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Experiment 3: 
Deep CNNs with Domain Specific Transfer Learning

Target Image Baseline Method [10 GCN152-A GCN152-A-TL



Evaluation Corpus 2
ISPRS Vaihingen

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.867 0.849 0.854

Proposed TL Res152 GCN-A 0.897 0.877 0.881

TL Res152 GCN-A-FF 0.896 0.904 0.905
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Experiment 4: 
Feature Fusion

• GCN152-A-TL-FF overcame DECD ~ 5.097 % F1
• GCN152-A-TL-FF overcame GCN152-A-TL ~ 2.455 % F1



Evaluation Corpus 2
ISPRS Vaihingen

• Each class

Method Model Agri Forest Misc Urban Water

Baseline DCED 0.872 0.893 0.841 0.914 0.815

Proposed GCN152-TL-A 0.871 0.916 0.890 0.918 0.874

GCN152-TL-A-FF 0.928 0.976 0.926 0.968 0.898
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• Our Proposed won DECD 5 out of 5 classes

Experiment 4: 
Feature Fusion



Evaluation Corpus 2
ISPRS Vaihingen
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Experiment 4: 
Feature Fusion

Target Image Baseline Method [10 GCN152-A-TL GCN152-A-TL-FF



Evaluation Corpus 2
ISPRS Vaihingen

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.867 0.849 0.854

Proposed TL Res152 GCN-A-FF 0.896 0.904 0.905

TL Res152 GCN-A-FF-DA 0.923 0.900 0.911
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Experiment 5: 
Depthwise Atrous Convolution

• Precision
• Recall
• F1-score

• GCN152-A-TL-FF-DA overcame DECD ~ 5.67 % F1
• GCN152-A-TL-FF-DA overcame GCN152-A-TL-FF ~ 0.573 % F1



Evaluation Corpus 2
ISPRS Vaihingen

• Each class

Method Model Agri Forest Misc Urban Water

Baseline DCED 0.872 0.893 0.841 0.914 0.815

Proposed GCN152-TL-A-FF 0.928 0.976 0.926 0.968 0.898

GCN152-TL-A-FF-DA 0.907 0.979 0.927 0.972 0.910
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• Our Proposed won DECD 5 out of 5 classes

Experiment 5: 
Depthwise Atrous Convolution



Evaluation Corpus 2
ISPRS Vaihingen
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Experiment 5: 
Depthwise Atrous Convolution

Target Image Baseline Method [10 GCN152-A-TL-FF GCN152-A-TL-FF-DA



Evaluation Corpus 2
ISPRS Vaihingen Summary

Method Model F1 Score Increase

Baseline DCED 0.854

P1
Enhanced GCN +

Deeper Head Network
0.868 1.366 %

P2 + Attention 0.874 0.550 %

P3 + Transfer Learning 0.881 0.726 %

P4 + Feature Fusion 0.905 2.455 %

P5
+ Depthwise Atrous 

Convolution
0.911 0.573 %
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The most impactful method: 
Feature Fusion



3rd Corpus
Isan, Thailand (Medium Resolution Corpus)



Evaluation Corpus 1
Nan, Thailand

Corpus 2
ISPRS Vaihingen

Corpus 3
Isan, Thailand

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.861 0.782 0.810
Proposed - Res50 GCN 0.873 0.872 0.872

- Res101 GCN 0.865 0.884 0.874
- Res152 GCN 0.860 0.898 0.876
- Res152 GCN-A 0.865 0.891 0.877

TL Res152 GCN-A 0.890 0.923 0.899
TL Res152 GCN-A-FF 0.919 0.934 0.929
TL Res152 GCN-A-FF-DA 0.945 0.938 0.947

Page 140Result: Our proposed method yields a higher F1 Score from baseline method at 13.7%



Evaluation Corpus 1
Nan, Thailand

Corpus 2
ISPRS Vaihingen

Corpus 3
Isan, Thailand

• Each class

Method Model Corn Pineapple Pararubber

Baseline DCED 0.905 0.815 0.820

Proposed GCN50 0.933 0.778 0.888

GCN101 0.837 0.815 0.862

GCN152 0.910 0.721 0.879

GCN152-A 0.858 0.768 0.854

GCN152-TL-A 0.919 0.899 0.919

GCN152-TL-A-FF 0.952 0.925 0.931

GCN152-TL-A-FF-DA 0.969 0.948 0.938
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Evaluation Corpus 3
Isan, Thailand

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.861 0.782 0.810
Proposed - Res50 GCN 0.873 0.872 0.872

- Res101 GCN 0.865 0.884 0.874
- Res152 GCN 0.860 0.898 0.876
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Experiment 1: 
How it impacts modern and over-deeper backbone?

• GCN50 overcame DECD ~ 6.145 % F1
• GCN152 overcame DECD ~ 6.601 % F1



Evaluation Corpus 3
Isan, Thailand

• Each class

Method Model Corn Pineapple Pararubber

Baseline DCED 0.905 0.815 0.820

Proposed GCN50 0.933 0.778 0.888
GCN101 0.837 0.815 0.862

GCN152 0.910 0.721 0.879
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• GCN Family won DECD 3 out of 3 classes

Experiment 1: 
How it impacts modern and over-deeper backbone?



Evaluation Corpus 3
Isan, Thailand

Page 144

Experiment 1: 
How it impacts modern and over-deeper backbone?

Input Image Target Image Baseline Method [10] GCN50



Evaluation Corpus 3
Isan, Thailand
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Experiment 1: 
How it impacts modern and over-deeper backbone?

Target Image GCN50 GCN101 GCN152



Evaluation Corpus 3
Isan, Thailand

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.861 0.782 0.810
Proposed - Res152 GCN 0.860 0.898 0.876

- Res152 GCN-A 0.865 0.891 0.877

Page 146

Experiment 2: 
Chanel Attention

• GCN152-A overcame DECD ~ 6.681 % F1
• GCN152-A overcame GCN152 ~ 0.081 % F1



Evaluation Corpus 3
Isan, Thailand

• Each class

Page 147

• Our Proposed won DECD 2 out of 3 classes

Experiment 2: 
Chanel Attention

Method Model Corn Pineapple Pararubber

Baseline DCED 0.905 0.815 0.820

Proposed GCN152 0.910 0.721 0.879

GCN152-A 0.858 0.768 0.854



Evaluation Corpus 3
Isan, Thailand
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Experiment 2: 
Chanel Attention

Target Image Baseline Method [10 GCN152 GCN152-A



Evaluation Corpus 3
Isan, Thailand

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.861 0.782 0.810
Proposed - Res152 GCN-A 0.865 0.891 0.877

TL Res152 GCN-A 0.890 0.923 0.899
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Experiment 3: 
Deep CNNs with Domain Specific Transfer Learning

• GCN152-A-TL overcame DECD ~ 8.875 % F1
• GCN152-A-TL overcame GCN152-A ~ 2.194 % F1



Evaluation Corpus 3
Isan, Thailand

• Each class
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• Our Proposed won DECD 3 out of 3 classes

Experiment 3: 
Deep CNNs with Domain Specific Transfer Learning

Method Model Corn Pineapple Pararubber

Baseline DCED 0.905 0.815 0.820

Proposed GCN152-A 0.858 0.768 0.854

GCN152-TL-A 0.919 0.899 0.919



Evaluation Corpus 3
Isan, Thailand
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Experiment 3: 
Deep CNNs with Domain Specific Transfer Learning

Target Image Baseline Method [10 GCN152-A GCN152-A-TL



Evaluation Corpus 3
Isan, Thailand

• Precision
• Recall
• F1-score

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.861 0.782 0.810
Proposed TL Res152 GCN-A 0.890 0.923 0.899

TL Res152 GCN-A-FF 0.919 0.934 0.929
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Experiment 4: 
Feature Fusion

• GCN152-A-TL-FF overcame DECD ~ 11.829 % F1
• GCN152-A-TL-FF overcame GCN152-A-TL ~ 2.954 % F1



Evaluation Corpus 3
Isan, Thailand

• Each class

Page 153

• Our Proposed won DECD 3 out of 3 classes

Experiment 4: 
Feature Fusion

Method Model Corn Pineapple Pararubber

Baseline DCED 0.905 0.815 0.820

Proposed GCN152-TL-A 0.919 0.899 0.919

GCN152-TL-A-FF 0.952 0.925 0.931



Evaluation Corpus 3
Isan, Thailand
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Experiment 4: 
Feature Fusion

Target Image Baseline Method [10 GCN152-A-TL GCN152-A-TL-FF



Evaluation Corpus 3
Isan, Thailand

Method Pretrained Backbone Model Precision Recall F1 Score

Baseline - - DCED 0.861 0.782 0.810
Proposed TL Res152 GCN-A-FF 0.919 0.934 0.929

TL Res152 GCN-A-FF-DA 0.945 0.938 0.947
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Experiment 5: 
Depthwise Atrous Convolution

• Precision
• Recall
• F1-score

• GCN152-A-TL-FF-DA overcame DECD ~ 13.701 % F1
• GCN152-A-TL-FF-DA overcame GCN152-A-TL-FF ~ 1.872 % F1



Evaluation Corpus 3
Isan, Thailand

• Each class
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• Our Proposed won DECD 3 out of 3 classes

Experiment 5: 
Depthwise Atrous Convolution

Method Model Corn Pineapple Pararubber

Baseline DCED 0.905 0.815 0.820

Proposed GCN152-TL-A-FF 0.952 0.925 0.931

GCN152-TL-A-FF-DA 0.969 0.948 0.938



Evaluation Corpus 3
Isan, Thailand
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Experiment 5: 
Depthwise Atrous Convolution

Target Image Baseline Method [10 GCN152-A-TL-FF GCN152-A-TL-FF-DA



Evaluation Corpus 3
Isan, Thailand Summary

Method Model F1 Score Increase

Baseline DCED 0.810

P1
Enhanced GCN +

Deeper Head Network
0.876 6.601 %

P2 + Attention 0.877 0.081 %

P3 + Transfer Learning 0.899 2.194 %

P4 + Feature Fusion 0.929 2.954 %

P5
+ Depthwise Atrous 

Convolution
0.947 1.872 %
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The most impactful method: 
Feature Fusion

And Transfer Learning 
(from Nan Corpus)
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Recap: The Results (Summary)
P1

Backbone

P2
Attention

(A)

P3
Transfer Learning

(TL)

P4
Feature Fusion

(FF)

P5
Depthwise Atrous

(DA)A = Channel Attention Block

FF = Feature Fusion Block

GCN = Global Conv Block

DA = Depthwise Atrous

TL = Transfer Learning • Corpus 1: Nan Province (Medium Resolution Corpus)
• GCN152-A-TL-FF-DA overcame DECD ~ 6.221 % F1
• The most impactful method: Channel Attention

• Corpus 2: ISPRS Vaihingen (Very-High Resolution Corpus)
• GCN152-A-TL-FF-DA overcame DECD ~ 5.67 % F1
• The most impactful method: Feature Fusion

• Corpus 3: Isan Region (Medium Resolution Corpus)
• GCN152-A-TL-FF-DA overcame DECD ~ 13.701 % F1
• The most impactful method: Feature Fusion and Transfer Learning from Nan
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Outline | Objective and Procedure
• Introduction
• Related Theory
• Related Works
• Methodology (Proposed Method)
• Experimental Results
• Objectives and Procedure
• Conclusions
• Publication and Reference
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The objectives of this research are as follows: 
1. To propose a new deep learning architecture to segment multi-objects from aerial and satellite 

images (remote sensing corpora)
2. To explore the effectiveness of proposing new deep learning techniques for semantic 

segmentation particularly on remote sensing corpora

Objective
Objective of research
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1. Evaluate the proposed new deep learning on ISPRS Vaihingen corpus (a city district of Stuttgart, 
Germany) and GISTDA corpora (GISTDA Nan province and Isan zone corpora) with Encoder-Decoder 
baseline model
• Nan province corpora have five classes: agriculture, forest, miscellaneous, urban, and water
• Isan zone corpora have three classes: corn, pineapple, and rubber tree

2. Evaluate the proposed deep learning on reliable measurements such as Precision, Recall, and F1-
score

Objective
Scope of research
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Procedure
Procedure

Research Planning S1/2017 S2/2017 S1/2018 S2/2018 S1/2019 S2/2019
1. Research modern deep learning techniques

2. Research deep learning on  remote sensing images

3. Literature review
4. Request and collect data sets from ISPRS corpus and private corpus 

(GISTDA)
5. Design and implement the proposed and baseline deep learning.

6. Conclude and prepare for 1st ISI journal

7. Write and thesis proposal examination

8. Evaluate and improve my new deep learning architecture

9. Conclude and prepare for 2nd ISI journal

10. Write and defend the dissertation
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Outline | Conclusions
• Introduction
• Related Theory
• Related Works
• Methodology (Proposed Method)
• Experimental Results
• Objectives and Procedure
• Conclusions
• Publication and Reference
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• What: Semantic Segmentation on Remotely Sensed Corpora 
• Why: The previous methods suffer from accuracy performance
• How: Deep Convolutional Encoder-Decoder Neural Network
• Proposed Methods (What’s New): 

• (1) Varying Backbones (2) Channel Attention (3) Domain-specific Transfer Learning (4) Feature Fusion (5) Depthwise Atrous Conv

• Result: 
• The results demonstrate that the “GCN152-TL-A-FF-DA” model significantly exceeds all baselines. It is the victor in all data sets 

and exceeds more than 90% of F1: 0.9114, 0.9362, and 0.9111 of the Landsat-8w3c, Landsat-8w5c, and ISPRS Vaihingen.
• Moreover, it reaches an accuracy surpassing 90% in almost all classes.

• Future Plan: 
• Efficient Uncertainty Estimation for Semantic Segmentation (Aleatoric and Epistemic) | Explainable AI

Conclusions
Title: Semantic Segmentation on Remotely Sensed Images Using Deep Convolutional Encoder-Decoder Neural Network
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Efficient Uncertainty Estimation for Semantic Segmentation (Aleatoric and Epistemic)

Future Plan: Huang, Po-Yu, et al. "Efficient uncertainty estimation for semantic segmentation in videos." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
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Efficient Uncertainty Estimation for Semantic Segmentation (Aleatoric and Epistemic)

Future Plan: Huang, Po-Yu, et al. "Efficient uncertainty estimation for semantic segmentation in videos." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
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Efficient Uncertainty Estimation for Semantic Segmentation (Aleatoric and Epistemic)

Future Plan: Huang, Po-Yu, et al. "Efficient uncertainty estimation for semantic segmentation in videos." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
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Outline | Conclusions
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• Related Works
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• Conclusions
• Publication and Reference
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Detail of All Corpora (1) Support Value
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Detail of All Corpora (2) Training Size

Public Data Set: 2D Semantic Labeling - Vaihingen 
• Training Set: 512x512 (210 Images)

• Validation Set: 512x512 (30 Images)

• Testing Set: 512x512 (30 Images)

Private Data Set: GISTDA Nan Province Corpus
• Training Set: 512x512 (1,770 Images)

• Validation Set: 512x512 (49 Images)

• Testing Set: 512x512 (100 Images)

Private Data Set: GISTDA ISAN zone Corpus
• Training Set: 512x512 (2,115 Images)

• Validation Set: 512x512 (49 Images)

• Testing Set: 512x512 (100 Images)
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ResNet - Architecture

Satellite

ResNet 50

ResNet 101

ResNet 152

P1
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Problem Solve: Unbalanced Class

https://github.com/keras-team/keras/issues/6261

https://github.com/keras-team/keras/issues/6261
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How does mean image subtraction work?

https://stackoverflow.com/questions/44788133/how-does-mean-image-subtraction-work

https://stackoverflow.com/questions/44788133/how-does-mean-image-subtraction-work
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Other Layers
• Interpolation Layer: Interpolation layer 

• performs resizing operation along the spatial dimension. 
• In our network, we use bilinear interpolation. 

• Elementwise Layer: Elementwise layer 
• performs elementwise operations on two or more previous layers, in which the feature maps must be of the 

same number of channels and the same size. 
• There are three kinds of elementwise operations: 

• product, sum, max. 
• In our network, we use sum operation.
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs
• (7) Depthwise Atrous

Refers to Squeeze-and-Excitation Networks and BiseNet

• Attention is helpful to focus on what we want
• We utilize channel attention to select the 

important features

Attention

One word “attends” to other words in the same sentence differently.
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs
• (7) Depthwise Atrous

Refers to Squeeze-and-Excitation Networks and BiseNet

• Attention is helpful to focus on what we want
• We utilize channel attention to select the 

important features

Attention
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs
• (7) Depthwise Atrous

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

• Attention is helpful to focus on what we want
• We utilize channel attention to select the 

important features

Attention

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs
• (7) Depthwise Atrous

http://jalammar.github.io/illustrated-transformer/

Attention

• Matrix Calculation of Self-Attention
• The first step is to calculate the Query, Key, and Value matrices. 
• We do that by packing our embeddings into a matrix X, and multiplying it by the 

weight matrices we’ve trained (WQ, WK, WV).

Sigmoid

http://jalammar.github.io/illustrated-transformer/
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs
• (7) Depthwise Atrous

https://medium.com/@14prakash/

ResNet

https://medium.com/@14prakash/
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Evaluation

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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Evaluation

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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Evaluation

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs

http://cs231n.stanford.edu/

Traditional Image Segmentation Network

Encoder Network Decoder Network 

Deep Encoder-Decoder Network (DCED)

http://cs231n.stanford.edu/
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs

http://cs231n.stanford.edu/

Traditional Image Segmentation Network: Sample (1)

Encoder Network Decoder Network 

Deep Encoder-Decoder Network (DCED)
FCN

http://cs231n.stanford.edu/
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs

http://cs231n.stanford.edu/

Traditional Image Segmentation Network: Sample (2)

Encoder Network Decoder Network 

Deep Encoder-Decoder Network (DCED)
SegNet

http://cs231n.stanford.edu/
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs

http://cs231n.stanford.edu/

Traditional Image Segmentation Network: Sample (3)

Encoder Network Decoder Network 

Deep Encoder-Decoder Network (DCED)
UNet

http://cs231n.stanford.edu/
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs

http://cs231n.stanford.edu/

Traditional Image Segmentation Network: Sample (4)

Encoder Network Decoder Network 

Deep Encoder-Decoder Network (DCED)
PSPNet

http://cs231n.stanford.edu/
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs

http://cs231n.stanford.edu/

Traditional Image Segmentation Network: Sample (5)

Encoder Network Decoder Network 

Deep Encoder-Decoder Network (DCED)
Mask R-CNN

http://cs231n.stanford.edu/
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs

http://cs231n.stanford.edu/

ResNet (Microsoft)

http://cs231n.stanford.edu/
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs

https://medium.com/@14prakash/

ResNet (Microsoft)

Encoder Network (VGG (Residual) Style) 

https://medium.com/@14prakash/
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Design CNNs

https://medium.com/@14prakash/

ResNet (Microsoft)

• More layers is better 
• but because of the vanishing gradient problem
• model weights of the first layers can not be updated 

correctly through the backpropagation of the error gradient 
• the chain rule multiplies error gradient values lower than 

one and then, when the gradient error comes to the first 
layers, its value goes to zero

• Objective of Resnet is preserve the gradient

https://medium.com/@14prakash/
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Related Theory
• (1) Computer Vision Tasks
• (2) CNNs

• Traditional CNNs
• Deep Learning Layers

• (3) Transfer Learning
• (4) Channel Attention
• (5) Feature Fusion
• (6) Depthwise Convolution
• (7) Design CNNs

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Depth-wise Separable Convolution

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215


Experimental Results (Full Path)

Page 207Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 207

Path: LC123047Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction
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Page 208Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 208

Path: LC129047Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction



Experimental Results (Full Path)

Page 209Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 209

Path: LC129048Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction



Experimental Results (Full Path)

Page 210Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

Experimental Results (Full Path)

Page 185Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 210

Path: LC130046Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction



Experimental Results (Full Path)

Page 211Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 211

Path: LC131046Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction
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Page 212Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 212

Path: LC131047Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction



Experimental Results (Full Path)

Page 213Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 213

Path: LC131048Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction
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Page 214Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 214

Path: LC132046Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction
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Page 215Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 215

Path: LC132047Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction
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Page 216Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 216

Path: LC132048Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction
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Page 217Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 217

Path: LC128051Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction
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Page 218Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 218

Path: LC129048Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction
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Page 219Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. Page 219

Path: LC129054Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth Prediction
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Page 220Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
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Page 221Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
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Outline | Related Theory
• Introduction
• Related Theory
• Related Works
• Methodology (Proposed Method)
• Experimental Results
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• Publication and Reference
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Related Theory
• (1) Computer Vision Tasks
• (2) Deep Convolutional Neural Networks (CNNs)

• Traditional CNNs
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