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INntroduction

 Semantic segmentation of remotely-sensed

corpora

*  Aerial (or Very-High Resolution, VHR) images

*  Satellite (or Medium-Resolution, MR) images

« Convolution Neural Network (CNNs)

*  (lassification of images has becomes very

efficient and smart -
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INntroduction

* Semantic seementation of remotely-sensed

COrpaora
* Aerial (or Very-High Resolution, VHR) images

* Satellite (or Medium-Resolution, MR) images

« Convolution Neural Network (CNNs)

* Classification of images has becomes very

efficient and smart .

= Redwood Comiplek McCourtney Fire
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Introduction (cont.)

* It has been implemented in many applications in various
domains

. Urban planning, map updates, route optimization, and navigation

*  Allowing us to better understand the domain’s images and create

important real-world applications

* Itis mainly used for the agricultural purpose

*  Crop mapping, forest inventory, land cover

* The most widely used satellite for agriculture is LANDSAT 8 E S —————————

* It contains operational land imager (OLI) and thermal infrared sensor (TIRS)

. It covers the landmass, agriculture and remote areas
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Introduction (cont.)
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https://earthobservatory.nasa.gov/images/145498/uptick-in-amazon-fire-activity-in-2019

Public and Private Corpora

Public corpus (ISPRS Vaihingen Corpus)

(a) image (b) ground truth




Public and Private Corpora

Public corpus (ISPRS Vaihingen Corpus)

Color Class

Car
Building

Tree
Low Vegetation
Imp Surfaces
Clutter

Page 11



Public and Private Corpora

Public corpus (ISPRS Vaihingen Corpus)

* There are 33 images of about 2,500 x 2,000 pixels at a ground sampling distance (GSD) of about 9 cm in

the image data
*  We randomly split the 16 images with ground truth available
* into a training set of 10 images and a validation set of 6 images

* 4 tiles (Image Numbers 5, 7, 23, and 30) were removed from the training set as the testing corpus
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Public and Private Corpora GIISTOA sz

Private corpus (GISTDA Nan Province Corpus)

Color Class

Agriculture
Forest
Miscellaneous
Urban
Water
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Public and Private Corpora GIISTOA sz

Private corpus (GISTDA Nan Province Corpus)

* The dataset is obtained from Landsat-8 satellite consisting of 1,012 satellite images
e Bands 5, 4, and 3 are used
* (Capture at Nan, a province in Thailand

 Medium resolution (16,800 x 15,800)

* The 1,012 images were split into 800 training and 112 validation images with publicly available

annotation, as well as 100 testing images with annotations withheld
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Public and Private Corpora G5O e

Private corpus (GISTDA ISAN Zone Corpus)

Color Class
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Public and Private Corpora

Private corpus (GISTDA ISAN Zone Corpus)

For the Dissertation, we select LC129048, LC130050 zone as the LC3W corpus
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Public and Private Corpora

Private corpus (GISTDA ISAN Zone Corpus)

* For the Dissertation, we select LC129048, LC130050 zone as the LC3W corpus

*  Medium resolution (15,376x15,872) pixels

° /64 training e

132 131 130 129

* 112 validating

* 100 testing

047

048

126

Path
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Statement of Problem (1) Very High Resolution

Input Image Target Image Baseline Method [10]

Problem:
False Negative

Problem:
False Positive

Car

Building

| - ' - Tree
: 5 Low Vegetation
7 ! Imp Surfaces
- Clutter

[10] Liu, Y., Fan, B., Wang, L., Bai, J,, Xiang, S., & Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 78-95. Page 1 8




Statement of Problem (2) Medium Resolution

Input Image Target Image Baseline Method [10]

VA Problem:

" False Negative

Problem:

False Positive

Agriculture

Forest

Miscellaneous

Urban

Water

[10] Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., & Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 78-95. Page 1 9



Statement of Problem (3) Medium Resolution

Input Image Target Image Baseline Method [10]

.

Problem:
False Negative

Problem:
False Positive

Corn
Pineapple

Para Rubber

Miscellaneous

[10] Liu, Y., Fan, B., Wang, L., Bai, J,, Xiang, S., & Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 78-95. Page 20



Statement of Problem (4)

* False Positive Problem

*  High Level (Sharp Boundary Object) such as Building Object, Rubber Tree (Zone)
* False Negative Problem

*  Rare Class (Low-Level Class) such as Water Class
* Motivation

*  This leads to some inconsistent results that suffer from accuracy performance
*  The primary challenge of this remote sensing task is a lack of training data

* This, in fact, has become a motivation of this work
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Outline | Related Theory

* Introduction

* Related Theory

* Related Works

* Methodology (Proposed Method)
* Experimental Results

* Objectives and Procedure

* Conclusions

e Publication and Reference
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Related Theory

e (1) Transfer Learning

e (2) Channel Attention

* (3) Feature Fusion

e (4) Depthwise Convolution

* (5) Design CNNs
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Related Theory

- (1) Transfer Learning "Transfer learning is the improvement of learning in
e (2) Channel Attention a new task through the transfer of knowledge from

e (3) Feature Fusion a related task that has already been learned.”

* (4) Depthwise Convolution higher slope higher asymptote

« (5) Design CNNs

------ with transfer
— Without transfer

performance

higher start

training

Page 24
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Related Theory

. (1) Transfer Learning ® Attention is helpful to focus on what we want
«  (2) Channel Attention ®* We utilize channel attention to select the
* (3) Feature Fusion important features

X v Ry (o O
* (4) Depthwise Convolution / IxIxC IX1xC
* (5) Design CNNs —| H ol H Focate () ]

w' w
C C
high attention

|+ owatenion | | l
She is eating a green apple.

One word “attends” to other words in the same sentence differently.
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Related Theory

. (1) Transfer Learning ® Attention is helpful to focus on what we want
«  (2) Channel Attention ®* We utilize channel attention to select the

* (3) Feature Fusion important features

e (4) Depthwise Convolution D f(x) |
ranspose _
. convolution / Ixlconv 1 attention
o (5) De5|gn CNNs feature maps (x) - _— map
_—‘_—\—|l S self-attention
g | | 1 s® |} ]1 l ® ‘ | I feature maps (0)
1x1conv _'__1 @ '_
ﬂ heo
1x1conv _—

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html Page 27
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el.ated TheOry Feature Fusion (1)

: ®  The features of the two paths are different in level of feature
* (1) Transfer Learning

representation

* (2) Channel Attention ° Simply sum up low and high features
e (3) Feature Fusion ° Utilization of low-level features for objects refinement
° (4) Depthwise Convolution Pooll Pool2  Pool3 Poold Pools Predict]  Deconvl  Deconv2 Decomy3  Softmax

High Level Feature

e (5) Design CNNs

5
redi
4 )
>@—>
Predict3

LOW LeVe| Featu re — 'Conv+ReLU 'Max Pooling ' Prediction ' Deconv ' Softmax

Tai, Lei, et al. "PCA-aided fully convolutional networks for semantic segsmentation of multi-channel fMRI." 2017 18th

. . Page 28
International Conference on Advanced Robotics (ICAR). IEEE, 2017.



Rel.ated Th eOry Feature Fusion (2)

: ®  The features of the two paths are different in level of feature
* (1) Transfer Learning

representation

* (2) Channel Attention ° Fuse spatial path (low level features) and context path (high

 (3) Feature Fusion level feature) together

* (4) Depthwise Convolution

e (5) Design CNNs

I1x1 conv

global pool

'

Low Level Feature il

mul— add —

High Level Feature

concatenate
conv+bn+relu
L 4

(c) Feature Fusion Module

Yu, C., Wang, J., Peng, C., Gao, C,, Yu, G, & Sang, N. (2018). Bisenet: Bilateral segmentation network for real-time Page 29

semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 325-341).



Rel,atEd Theer Depth-wise Convolution

: ° Filters and image have been broken into three different
* (1) Transfer Learning

channels and then convolved separately and stacked thereafter
* (2) Channel Attention

e (3) Feature Fusion

e (4) Depthwise Convolution

e (5) Design CNNs

https.//medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable- page 30
convolution-37346565d4ec
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Rel.atEd Theer Point-wise Convolution

This is the standard discrete convolution:

* (1) Transfer Learning

e (2) Channel Attention (F *k)(p) = Xs+t=p F(s)k(t)

e (3) Feature Fusion
e (4) Depthwise Convolution

« (5) Design CNNs

-
Y
-
- Y
. e
’V
N TN S .
\’\ . ),
N
https.//towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215 Page 31
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Retated Th eory Dilated Convolution (Atrous Convolution)

. . : . .
. (1) Transfer Learning Multi-scale context aggregation by dilated convolutions

The dilated convolution follows:

e (2) Channel Attention

(F x kK)(P) = Xs+1e=p F (8)k(E)
 (3) Feature Fusion

When [ = 1, the dilated convolution becomes as the standard convolution.

e (4) Depthwise Convolution

e (5) Design CNNs

1 Dilated Convolution 2 Dilated Convolution

(a) (b)

Page 32
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Retated Th eory Dilated Convolution (Atrous Convolution)

. . : . .
. (1) Transfer Learning Multi-scale context aggregation by dilated convolutions

1 Dilated Convolution 2 Dilated Convolution 4 Dilated Convolution

e (2) Channel Attention

e (3) Feature Fusion

e (4) Depthwise Convolution

(a) (b) (©)

« (5) Design CNNs
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Retated Th eory Dilated Convolution (Atrous Convolution)

*  (4) Depthwise Convolution ° Multi-scale context aggregation by dilated convolutions

e 3x3 Depthwise separable convolution decomposes a standard convolution into

° (a) a depthwise convolution (applying a single filter for each input channel)

¢ (b) a pointwise convolution (combining the outputs from depthwise convolution across channels).

° In this example, we explore atrous separable convolution where atrous convolution is adopted in the

depthwise convolution, as shown in (c) with rate = 2.

/

(a) Depthwise conv. (b) Pointwise conv.  (c) Atrous depthwise conv.

Page 34
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elated Theory

* (1) Transfer Learning i e WIder
é g

e (2) Channel Attention

. #channels : o = | —
e (3) Feature Fusion wider T e —— |
. . , , deeper
* (4) Depthwise Convolution &= | | i
i deeper
[
* (5) Design CNNs - |
.---Iayer_i - —
T L i
H . | | {~higher i —+higher
|} resolution HxW ]_ i +_resolution i ] -~*-resolution
(a) baseline (b) width (c) depth (d) resolution (e) compound
scaling scaling scaling scaling

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html Page 35
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Related Theory

Compound Scaling

* (1) Transfer Learning Width Scaling i} TS -
| -.’__—
e (2) Channel Attention == | — ]
. #channels : G == e
* (3) Feature Fusion | S J— - — g
* (4) Depthwise Convolution &= | ‘ dee?er dee;er
* (5) Design CNNs - | |
.---Iayer_i - ]
T i
o " higher i ~+high
B} resolution HXW i j_ i _+_resolution i | --*--r;zoﬁ:ﬁon
(a) baseline | ()widh 1! (c)depth | (d)resolution ' (e) compound |
| scaling 1 scaling | scaling ' scaling |
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Re l.atEd Th e0o ry Dept Scaling Width Scaling Compound Scaling

, VGG Style U-Shape Style Context Path Style
* (1) Transfer Learning

(Depth Scaling) (Width Scaling) (Compound Scaling)

e (2) Channel Attention

. 4 / ¥ /
. Input” / Input / / | /
 (3) Feature Fusion =Tl / . / TS Input /
_______________ ‘ : | ‘ y
. . Network l I;:;:i‘:; Network Network v
¢ (4) DepthW|Se Convolution il Pruning | Pruning ‘\,‘ ,
o | b — i e
H * o W Vomssmmersmmnd ,: " __________________ ,“ \I 1"
e (5) Design CNNs i | ; ; N o . —— |
[ T * ] '+ + ------- Spatial 1
16x | S— : , : k Path | —g
sessigpw ) :' > e A
\ Drop i ! ' ;
H escomsaguscsnsd = mesmssepasewsel "
2x Stage ; s'4+7: + — |
S— f | > N Context
J'/ / i ‘ R .': e // A 7 Path
— / / j Encoder Decoder R -
Output / / Output
Output
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Outline | Related Works

* Introduction

* Related Theory

* Related Works

* Methodology (Proposed Method)
* Experimental Results

* Objectives and Procedure

* Conclusions

e Publication and Reference
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Related Works

* (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* CamVid Corpus
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Related Works

* (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* (CamVid Corpus (http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)

(a) image

A

(b) ground truth

low vegetation

impervious surfaces
. clutter/background
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Related Works

* (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)
*  Fully Convolutional Networks by Long, J. et. al. (CVPR 2015)
F1-Score on Test Set is 80.8%

* Segnet: A Deep Convolutional Encoder-Decoder Architecture by Badrinarayanan, V. et al. (PAMI, 2017)
F1-Score on Test Set is 84.7%

* Learning Deconvolution Network by Noh, H. et al. (CVPR 2015)
F1-Score on Test Set is 83.5%

* Gated Convolutional Neural Network by Wang, H. et al. (Remote Sensing 2017)
F1-Score on Test Set is 85.2%

*  Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing, 2018)

F1-Score on Test Set is 85.4%
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* (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)
* Fully Convolutional Networks by Long, J. et. al. (CVPR 2015)
F1-Score on Test Set is 80.8%
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F1-Score on Test Set is 85.2%

* Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing
2018)

F1-Score on Test Set is 85.4% Winner is Encoder-Decoder (ScasNet-based)
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Related Works

* (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

 CamVid Corpus (http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)

FCN-8s {Long, 2015 #6} 0.871 0.918 0.752 0.861 0.638 0.808
SegNet {Badrinarayanan, 2017 #7} 0.867 0.891 0.763 0.839 0.657 0.847
DeconvNet {Noh, 2015 #8} 0.891 0.932 0.814 0.857 0.684 0.835
GSN {Wang, 2017 #9} 0.892 0.945 0.749 0.875 0.798 0.852
Encoder-Decoder {Liu, 2018 #10} 0.872 0.893 0.841 0.914 0.815 0.854
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Related Works

* (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)

forward /inference

>

«

*  Fully Convolutional Networks by Long, J. et. al. (CVPR 2015) e

¢ F1-Score on Test Set is 80.8% _ ) TT

* Segnet: A Deep Convolutional Encoder-Decoder Architecture v Convolutional Encoder-Decoder ro—

Pooling Indices

* by Badrinarayanan, V. et al. (PAMI, 2017)

I

. F1-Score on Test Set is 75.5% RGB Image

Batch Normalisation + R Segmentation

I con + ell)
I Fooling M Upsampling Softmax

* Learning Deconvolution Network by Noh, H. et al. (CVPR 2015)

. F1-Score on Test Set is 83.5% _




Related Works

Point of view in the previous work

* (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)

* Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing)

F1-Score on Test Set is 85.4% (Winner)

Encoder (Based on VGG-Net) 1. Context Aggregation

A A

2. Objects Refinement

hd

’ i \:f’Eontextl

Ll
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~-{Context2} @ @
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@ Convolution+Rel.U

ﬁ Max-pooling Layer @ 3. Residual Correction € Feature Fusion ® Resize = Softmax
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Related Works

* (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* CamVid Corpus
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CamVid Corpus

The Cambridge-driving Labeled Video Database
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Road LaneMkgsDriv
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32 semantic classes
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Related Works

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

*  Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)

F1-Score on Test Set is 80.8%
* DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017)
F1-Score on Test Set is 75.1%
*  Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
F1-Score on Test Set is 86.1%
* Encoder-Decoder (DeeplabV3) by Chen, L. C. (ECCV 2018)
F1-Score on Test Set is 67.2%
* Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)

F1-Score on Test Set is 83.1%
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Related Works

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

*  Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)

F1-Score on Test Set is 80.8%
* DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017)
F1-Score on Test Set is 75.1%
* Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
F1-Score on Test Set is 86.1%
* Encoder-Decoder (DeeplabV3) by Chen, L. C. (ECCV 2018)
F1-Score on Test Set is 67.2%
* Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)

F1-Score on Test Set is 83.1%
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Related Works

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)

F1-Score on Test Set is 80.8%
* DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017)
F1-Score on Test Set is 75.1%
* Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
F1-Score on Test Set is 86.1%
* Encoder-Decoder (DeeplabV3) by Chen, L. C. (ECCV 2018)
F1-Score on Test Set is 67.2%
* Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)

F1-Score on Test Set is 83.1%
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Related Works

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)

F1-Score on Test Set is 80.8%
* DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017)
F1-Score on Test Set is 75.1%
* Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
F1-Score on Test Set is 86.1%
* Encoder-Decoder (DeeplabV3) by Chen, L. C. (ECCV 2018)
F1-Score on Test Set is 67.2%
* Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)

F1-Score on Test Set is 83.1%
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Related Works

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)

F1-Score on Test Set is 80.8%
* DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017)
F1-Score on Test Set is 75.1%
* Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
F1-Score on Test Set is 86.1%
* Encoder-Decoder (DeeplLabV3) by Chen, L. C. (ECCV 2018)
F1-Score on Test Set is 67.2%
* Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)

F1-Score on Test Set is 83.1%
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Related Works

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)

F1-Score on Test Set is 80.8%
* DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017)
F1-Score on Test Set is 75.1%
* Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
F1-Score on Test Set is 86.1%
* Encoder-Decoder (DeeplabV3) by Chen, L. C. (ECCV 2018)
F1-Score on Test Set is 67.2%
* Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)

F1-Score on Test Set is 83.1%
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Related Works

(2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)

F1-Score on Test Set is 80.8%

DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017)

F1-Score on Test Setis 75.1%

Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)

F1-Score on Test Set is 86.1%

Encoder-Decoder (DeeplLabV3) by Chen, L. C. (ECCV 2018)

F1-Score on Test Setis 67.2%

Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)

F1-Score on Test Set is 83.1%

Winner is Global Convolution Network (GCN)
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Related Works

* (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* CamVid Corpus

PSPNet {Zhao, 2017 #1} 0.74 0.74 0.74

DenseNet (Tiramisu) {Badrinarayanan, 2017 #2} 0.74 0.77 0.75
GCN {Peng, 2018 #3} 0.85 0.87 0.86

DeeplLabV3 {Chen, 2018 #4} 0.72 0.63 0.67

BiseNet {Yu, 2018 #5} 0.84 0.82 0.83
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Related Works

Point of view in the previous work

(2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
«  F1-Score on Test Set is 86.1% (Winner)
Image Score Map
| wxhxc b wxhx21 — : =
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v L v . : Y 5

d conv-1
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. b i E res-4 GCN e : ‘ \ BT : Deconv
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A. Whole Pipeline
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Related Works

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)

F1-Score on Test Set is 86.1% (Winner)
** Valid Receptive Field (VRF)

B

(A) and fails to hold the entire object if the input resized to a larger scale (B). As a comparison, their Global Convolution Network significantly enlarges the VRF (C).
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Related Works

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018) Solve: False Negative

F1-Score on Test Set is 86.1% (Winner) and False Positive

B. Baseline

C. GCN D. GCN + BR

E. Ground Truth

Effect of GCN and Boundary Refinement
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Related Works

* Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)

F1-Score on Test Set is 83.1% (first runner-up)

1

p— 1
g > 2 5= !
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—_— — e O e & |- s | ,
Sl =!]|3 ) '
S = IS iz !
o o !
1

1

1

(b) Attention Refinment Module

Point of view in the previous work

(2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

conv+bn+relu
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¥
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1
conv+bn+relu | ! :

Context Path

(a) Network Architecture
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Related Works

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)

. F1-Score on Test Set is 83.1% (first runner-up)
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Related Works

* (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

* Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)
| Problem: False Positive |

F1-Score on Test Set is 83.1% (first runner-up)

(a) Image (b) U-Shape (c) BiSeNet (d) GT
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Recap: Each Techniques from Related Theory and Work

*  From Remote Sensing Challenge, Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of

Photogrammetry and Remote Sensing 2018) is the winner.

* From CamVid Challenge, Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018) is

the winner.
* Modern Technique from modern deep learning researches:
* Global Convolutional (Large Kernel Matter, Dynamic Kernel Size)
* (Channel Attention
* Domain Specific Transfer Learning
* [Feature Fusion

* Depthwise Atrous Convolution
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Outline | Methodology (Proposed Method)

* Introduction

* Related Theory

* Related Works

* Methodology (Proposed Method)
* Experimental Results

* Objectives and Procedure

* Conclusions

e Publication and Reference
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Proposed Method

Backbone Model
Conv-1 P1: Modification of backbone architecture
256x256x64 P2: Applying the Channel Attention Block
P3: Using concept of Transfer Learning

P4: Encoders Matter (Feature Fusion)
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P rO p O S e d I\/\ et h O d Ba CE; one Attention Transfer Learning § Feature Fusion § Depthwise Atrous

(A) (TL) (FF) (DA)

Backbone Model
Conv-1 P1: Modification of backbone architecture
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P2 P3 P4 P5

P rO p O S e d I\/\ et h O d Ba CE; one Attention Transfer Learning § Feature Fusion § Depthwise Atrous
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P2 P3 P4 PS5
Attention Transfer Learning B Feature Fusion j§ Depthwise Atrous
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P2 P3 P4 PS5
Attention Transfer Learning B Feature Fusion j§ Depthwise Atrous

Backbone (A) (L) (FF) (DA)
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Proposed Method
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P rO p O S e d I\/\ et h O d Ba CE; one Attention Transfer Learning § Feature Fusion § Depthwise Atrous
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P1: Modification of backbone architecture

| i

i 256x256x64 i P2: Applying the Channel Attention Block

| l | @ P3: Using concept of Transfer Learning

i i = i

i Res-2 _ii| GCN + BR E,I A R BR —» Deconv | _|Ioo , Deconv || oo
i 128x128x256 i} |128,21 i i 256,21 512,21
| L e

i Res-3 _i| GCN Jeel L[ A | L IBR Deconv

! 64x64x512 | | 64,21 : ; 128,21

i | i i L

i Res-4 i | GCN 5 Deconv

] - e > — + —> —

i 32x32x1024 1 | 32,21 =LA BR 64,21

i Res-5 i | GCN i { | Deconv _ :

i 16x16x2048 i* 16.21 - BR i’ A T’ 32 21 A = Channel Attention Block
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P2 P3 P4 P5

P rO p O S e d I\/\ et h O d Ba CE; one Attention Transfer Learning B Feature Fusion J§ Depthwise Atrous

(A) (TL) (FF) (DA)

Model

P1: Modification of backbone architecture

i
256x256x64 i P2: Applying the Channel Attention Block
l | @ P3: Using concept of Transfer Learning
i m i
Res-2 _ii| GCN + BR E,I A R BR —» Deconv | _|Ioo , Deconv || oo
128x128x256 i} |128,21 i i 256,21 512,21
Res-3 _ i | GCN er b A 4 BR Deconv
64x64x512 |1 | 64,21 ! T ' " 12821
I - =
Res-4 i GCN ! i Deconv
. I N . —]
32x32x1024 |1 | 32,21 =LA SR 64,21
Res-5 i | GCN i { | Deconv _ :
16x16x2048 i* 16.21 - BR i’ A T’ 32,21 A = Channel Attention Block
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P2 P3 P4 P5

P rO p O S e d I\/\ et h O d Ba CE; one Attention Transfer Learning B Feature Fusion J§ Depthwise Atrous

(A) (TL) (FF) (DA)

Model

P1: Modification of backbone architecture

| i

i 256x256x64 i P2: Applying the Channel Attention Block

i l i @ P3: Using concept of Transfer Learning

i i re i

i Res-2 _ii| GCN + BR E,I A R BR —» Deconv | _|Ioo , Deconv || oo
! 128x128x256 i} |128,21 i i 256,21 512,21
i | i i A

| Res-3 _i| GCN Ry BR Deconv

| 64x64x512 |1 | 64.21 ! T ' " 12821

i | i i L

i Res-4 i | GCN 5 Deconv

- — N L — + — —

i 32x32x1024 |1 | 32,21 =LA BR 64,21

i Res-5 i | GCN i { | Deconv _ :

i 16x16x2048 i» 16.21 -» BR EP A T> 32,21 A = Channel Attention Block
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P2 P3 P4 P5

P rO p O S e d I\/\ et h O d Ba CE; one Attention Transfer Learning §§ Feature Fusion | Depthwise Atrous

(A) (TL) (FF) (DA)

Backbone Model
Conv-1 P1: Modification of backbone architecture
256x256x64 P2: Applying the Channel Attention Block
P3: Using concept of Transfer Learning
l r'@: P4: Encoders Matter (Feature Fusion)
Res-2 GCN i i Deconv Deconv
= . T — o —
128x128x256 || 128.21 AT =i 256,21 BR " 512,21 [ | BR
Res-3 . | GCN i i Deconv
@ 64x64x512 | | 64,21 LA T T BRI 12821
Res-4 GCN ! i Deconv
= = e o
32x32x1024 | | 32,21 "LA SR 64,21
Res-5 GCN E . | Deconv _ :

FF = Feature Fusion Block Page 86
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P2 P3 P4 P5

P rO p O S e d I\/\ et h O d Attention Transfer Learning §§ Feature Fusion | Depthwise Atrous

(A) (TL) (FF) (DA)

Backbone Model
Conv-1 P1: Modification of backbone architecture
256x256x64 P2: Applying the Channel Attention Block
P3: Using concept of Transfer Learning

P4: Encoders Matter (Feature Fusion)

l

s

Res-2 GCN ! Deconv Deconv
—- N > + —> — — —
128x128x256 || 128.21 AT =i 256,21 BR " 512,21 2l
Res-3 _| | GCN i i Deconv
@ 64x64x512 | | 64,21 LA T T BRI 12821
Res-4 GCN ! i Deconv
. N b —
32x32x1024 | | 32,21 "LA SR 64,21
Res-5 GCN i { | Deconv _ :
16x16x2048 - 16.21 i’ A T’ 32,21 A = Channel Attention Block

FF = Feature Fusion Block Page 87
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P2 P3 P4 P5

P rO p O S e d I\/\ et h O d Attention Transfer Learning §§ Feature Fusion | Depthwise Atrous

(A) (TL) (FF) (DA)

Backbone Model
Conv-1 P1: Modification of backbone architecture
256x256x64 P2: Applying the Channel Attention Block
P3: Using concept of Transfer Learning

P4: Encoders Matter (Feature Fusion)

o

l

r 3
Res-2 GCN i i Deconv Deconv
—- N > + —> — — —
128x128x256 || 128.21 AT =i 256,21 BR " 512,21 2l
Res-3 GCN i 5 Deconv
@ 64x64x512 | | 64,21 LA T T BRI 12821
Res-4 GCN ! i Deconv
. N b —
32x32x1024 | | 32,21 "LA SR 64,21
Res-5 GCN i { | Deconv _ :
16x16x2048 -> 16.21 i’ A T’ 32,21 A = Channel Attention Block

FF = Feature Fusion Block Page 88
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P2 P3 P4 P5

P rO p O S e d I\/\ et h O d Attention Transfer Learning §§ Feature Fusion | Depthwise Atrous

(A) (TL) (FF) (DA)

Backbone Model
Conv-1 P1: Modification of backbone architecture
256x256x64 P2: Applying the Channel Attention Block
P3: Using concept of Transfer Learning

P4: Encoders Matter (Feature Fusion)

o

l

r 3
Res-2 GCN i i Deconv Deconv
—- N > + —> — — —
128x128x256 || 128.21 AT =i 256,21 BR " 512,21 2l
Res-3 GCN i 5 Deconv
@ 64x64x512 | | 64,21 LA T T BRI 12821
Res-4 GCN ! i Deconv
n N b —
32x32x1024 | | 32,21 "LA SR 64,21
Res-5 GCN i { | Deconv _ :
16x16x2048 -> 16.21 i’ A T’ 32,21 A = Channel Attention Block

FF = Feature Fusion Block Page 89
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P2 P3 P4 P5

P rO p O S e d I\/\ et h O d Attention Transfer Learning §§ Feature Fusion | Depthwise Atrous

(A) (TL) (FF) (DA)

Backbone Model
Conv-1 P1: Modification of backbone architecture
256x256x64 P2: Applying the Channel Attention Block
P3: Using concept of Transfer Learning

P4: Encoders Matter (Feature Fusion)

o

l

r 3
Res-2 GCN i i Deconv Deconv
—- N > + —> — — —
128x128x256 || 128.21 AT =i 256,21 BR " 512,21 2l
Res-3 GCN i 5 Deconv
@ 64x64x512 | | 64,21 LA T T BRI 12821
Res-4 GCN ! i Deconv
n N b —
32x32x1024 | | 32,21 "LA SR 64,21
Res-5 GCN i { | Deconv _ :
16x16x2048 16.21 i’ A T’ 32,21 A = Channel Attention Block

FF = Feature Fusion Block Page 90
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P2 P3 P4 P5

P rO p O S e d I\/\ et h O d Attention Transfer Learning §§ Feature Fusion | Depthwise Atrous

(A) (TL) (FF) (DA)

Backbone Model
Conv-1 P1: Modification of backbone architecture
256x256x64 P2: Applying the Channel Attention Block
P3: Using concept of Transfer Learning

o

P4: Encoders Matter (Feature Fusion)

| —@—

.
Res-2 | | GCN i Deconv Deconv
126x128x256 || 128,21 "H" BRTLA T 1Y 18R Tl2se21 (BRI Tl s1221 [ BR
| | P —
© .oio o - :
64x64x512 64,21 In CNNs, it is found that the low-level features can usually be
l captured by the shallow layers (Zeiler and Fergus, 2014).
Res-4 GCN
32x32x1024 | | 32.21 B8RS J
Res-5 GCN i { | Deconv _ :
16x16x2048 16.21 4&-’ i’ A T’ 32,21 A = Channel Attention Block

FF = Feature Fusion Block Page 91
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P1 P2 P3 P4 P5
P rO p O S e d I\/\ et h O d Backbone Attention Transfer Learning @ Feature Fusion | Depthwise Atrous

(A) (TL) (FF) (DA)

Backbone Model

P1: Modification of backbone architecture
> P2: Applying the Channel Attention Block
P3: Using concept of Transfer Learning
P4: Encoders Matter (Feature Fusion)

P5: Depthwise Atrous (DA)

dilation rates = 1
— | %—{ Il |—

e

| dilation rates = 4 |

W H

v

Res2 _|.| GCN
128x128x256 | | 128,21

|

dllation

=
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P2 P3 P4 P5

P rO p O S e d I\/\ et h O d Ba cill one Attention Transfer Learning § Feature Fusion | Depthwise Atrous

(A) (TL) (FF) (DA)

l dilation rates = 1 \
] {5

| dilation rates = 2 |

GCN = Global Conv Block

P5

Conv-1

BR = Boundary Refinement Block Satellite e BB

A = Channel Attention Block

Res-2 GCN VEaaals |/‘ (o h\|
128x128x256 128,21 *“ A ) 4

| dilation rates = 4 |

TL = Transfer Learning N

- —

FF = Feature Fusion Block

DA = Depthwise Atrous | dilation rates = 8 |

m IEI!I @

5 H ¥

= Continue to decoder network

: = Repeat this step 3 times
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P2 P3 P4 P5

P rO p O S e d I\/\ et h O d Attention Transfer Learning § Feature Fusion | Depthwise Atrous

(FF) (DA)

P4: Applying the Feature Fusion (FF)

Bgd(ham ' — P5: Applying the Depthwise Atrous (DA) Convolution ———
Conv-1 |
GCN = Global Conv Block Lot ioay R edlelion
(%
BR = Boundary Refinement Block Res2 |! || [Gon BR — A |
128x128x256 | | 128,21
! |
A = Channel Attention Block
TL = Transfer Learning [
: Res-3 |!]| [ GON BR =
FF = Feature Fusion Block e | -
DA = Depthwise Atrous i e et
i H B
Res-4 ! GCN BR A E B P % ’? BR Deconv
32x32x1024 | | 128,21 i (\ Cc /}—*_ [ 64,21
i dilati tes = 8 g F
a 0 ra S
i l A = Channel Attention Block
163:?(-2504 . ; 12:21 l BR A Dsezc;r;v C = Concatenate Layer
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P2 P3 P4 P5

P rO p O S e d I\/\ et h O d Ba ckb one Attention Transfer Learning | Feature Fusion | Depthwise Atrous

(FF) (DA)

Backt i P4: Applying the Feature Fusion (FF) ,
Backbone ' —P5: Applying the Depthwise Atrous (DA) Convolution ———

GCN = Global Conv Block zsoczsnss | oscenv)_[gR) | Predicion
BR = Boundary Refinement Block Res2 | ||| [GoN 2 T
128x128x256 | | 128,21 256,21

A = Channel Attention Block

Res4 |! GCN
32x32x1024 | | | |128,21

o Deconv
ok 64,21

A = Channel Attention Block

Deconv C = Concatenate Layer
32,21

f
: GCN
Res-5 | BR A
16x16x2048 | | | 128,21 l
i
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Outline | Experimental Results

* Introduction

* Related Theory

* Related Works

* Methodology (Proposed Method)
* Experimental Results

* Objectives and Procedure

* Conclusions

e Publication and Reference
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- Corpus 1 Corpus 2 Corpus 3
Evaluation

Channel Attention Block iP+ P

GCN Global Convolutional Network
TP

TP+ EN

GCN50 Global Convolutional Network with ResNet50

Recall =
GCN101 Global Convolutional Network with ResNet101

GCN152 Global Convolutional Network with ResNet52

TL Domain-Specific Transfer Learning 2 X Precision X Recall

Fl —
Precision + Recall
FF Feature Fusion Module "

DA Depthwise Atrous Convolution

IP + TN
TP+ TN +FP +FN

Accuracy =

Abbreviations on our proposed deep learning methods .
Performance Metrics

Precision =
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Recap: Each Methods from Proposed

GCN = Global Conv Block P P2 P3 P4 P5
Backbone Attention Transfer Learning  Feature Fusion  Depthwise Atrous
A = Channel Attention Block (A) (TL) (FF) (DA)

TL = Transfer Learning

e e e * Experiment 1: How it impacts modern and over-deeper backbone?

DA = Depthwise Atrous * Experiment 2: Chanel Attention
* Experiment 3: Deep CNNs with Domain Specific Transfer Learning
* Experiment 4: Feature Fusion
* Experiment 5: Depthwise Atrous Convolution

* Three data sets: two private corpora from Landsat-8 satellite (Nan and Isan Region)

and one public benchmark from the “ISPRS Vaihingen” challenge.
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15t Corpus
Nan, Thailand (Medium Resolution Corpus)

i

1
| ! \J'l'




- Corpus 1 Corpus 2 Corpus 3
Fvaluation

Baseline DCED 0.857 0.894 0.874

0 Beddar Proposed - Res50 GCN 0.881 0.872 0.875
e Recall - Res101 GCN 0.862 0.897 0.877
® F1l-score - Res152 GCN 0.892 0.878 0.884
- Res152 GCN-A 0.907 0.929 0.917

TL Res152 GCN-A 0.921 0.918 0.918

TL Res152 GCN-A-FF 0.930 0.924 0.927

TL Res152 GCN-A-FF-DA 0.934 0.939 0.936

Result: Our proposed method yields a higher F1 Score from baseline method at 6.2% Page 100




- Corpus 1 Corpus 2 Corpus 3
Fvaluation

Baseline DCED 0.982 0.962 0.763 0.854 0.725

Proposed GCN50 0.967 0.948 0.817 0.881 0.792

GCN101 0.976 0.929 0.685 0.929 0.785

* Eachclass GCN152 0.976 0.950 0.823 0.913 0.797
GCN152-A 0.984 0.944 0.882 0.899 0.822

GCN152-TL-A 0.974 0.953 0.864 0.934 0.828

GCN152-TL-A-FF 0.986 0.982 0.918 0.956 0.844

GCN152-TL-A-FF-DA 0.989 0.957 0.934 0.949 0.868
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- Corpus 1 Experiment 1:
Fvaluation

Baseline DCED 0.857 0.894 0.874
. » Proposed : Res50 GCN 0881 0872 [ 0875
Precision | W
e Recall : Res101 GCN 0.862 0897 0877
Res152 GCN 0.892  0.878 , 0.884

® Fl-score

e GCNb50 overcame DECD ~ 0.116 % F1

e GCN152 overcame DECD ~ 1.043 9% F1
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- Corpus 1 Experiment 1:
Eva LU atl O ﬂ How it impacts modern and over-deeper backbone?

Baseline DCED 0.982 0962 0763 0854  0.725

Proposed GCN50 0967 0948 0817 0881  0.792

GCN101 0976 0929  0.685 0.929 = 0785

* Eachclass GCN152 0976 . 0.950 | : 0.823 0913 . 0.797

GCN Family won DECD 4 out of 5 classes
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E L .t Corpus 1 Experiment 1:
va u a | O n Nan, Thailand How it impacts modern and over-deeper backbone?
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E L .t Corpus 1 Experiment 1:
va u a | O n Nan, Thailand How it impacts modern and over-deeper backbone?




- Corpus 1 Experiment 2:
Fvaluation

Baseline DCED 0.857 0.894 0.874
. » Proposed : Res152 GCN 0892 0878 ' 0s8sq !
Precision | W |
Res152 GCN-A 0.907 0929 0917

® Recall

® Fl-score

e GCN152-A overcame DECD ~ 4.332 % F1

e GCN152-A overcame GCN152 ~ 3.288 % F1
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- Corpus 1 Experiment 2:
Fvaluation

Baseline DCED 0.982 0.962 0.763 0.854 0.725
Proposed GCN152 0.976 0.950 0.823 0.913 0.797
GCN152-A 0.984 0.944 0.882 0.899 0.822

® Each class

Our Proposed won DECD 4 out of 5 classes

Page 107



- Corpus 1 Experiment 2:
Fvaluation

Target Image Baseline Method [ GCN152 GCN152-A

’l' 7\'
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- Corpus 1 Experiment 3:

Baseline DCED 0.857 0.894 0.874
. » Proposed : Res152 GCN-A 0.907 0929 T o917 1
Precision | W |

TL Res152 GCN-A 0921 0918 0918

® Recall

® Fl-score

« GCN152-A-TL overcame DECD ~ 4.446 % F1

 GCN152-A-TL overcame GCN152-A~ 0.114 % F1
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- Corpus 1 Experiment 3:

Baseline DCED 0.982 0.962 0.763 0.854 0.725
Proposed GCN152-A 0.984 0.944 0.882 0.899 0.822
GCN152-TL-A 0.974 0.953 0.864 0.934 0.828

® Each class

Our Proposed won DECD 4 out of 5 classes

Page 110



- Corpus 1 Experiment 3:

Target Image Baseline Method [ GCN152-A GCN152-A-TL

v 'T 9
7L, ﬁ 1
AR
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- Corpus 1 Experiment 4:
Fvaluation

® Precision

° Baseline DCED 0.857 0.894 0.874
Recall
_ 5915 )
® Fl.-ccore Proposed TL Res152 GCN-A 0.921 0.918 L i91i )
TL Res152 GCN-A-FF 0.930 0.924 0.927

« GCN152-A-TL-FF overcame DECD ~ 5.288 % F1

 GCN152-A-TL-FF overcame GCN152-A-TL ~ 0.843 % F1
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- Corpus 1 Experiment 4:
Fvaluation

Baseline DCED 0.982 0.962 0.763 0.854 0.725
Proposed GCN152-TL-A 0.974 0.953 0.864 0.934 0.828
GCN152-TL-A-FF 0.986 0.982 0.918 0.956 0.844

® Each class

Our Proposed won DECD 5 out of 5 classes
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E L .t Corpus 1 Experiment 4:
va ua |O n Nan, Thailand Feature Fusion
{
} ‘
('t
v




- Corpus 1 Experiment 5:
Evaluation

® Precision

° Baseline DCED 0.857 0.894 0.874
Recall
“A- o927 1
® Fl.-ccore Proposed TL Res152 GCN-A-FF 0.930 0.924 L 2921 )
TL Res152 GCN-A-FF-DA 0.934 0.939 0.936

 GCN152-A-TL-FF-DA overcame DECD ~ 6.221 % F1

 GCN152-A-TL-FF-DA overcame GCN152-A-TL-FF ~ 0.933 % F1
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- Corpus 1 Experiment 5:
Evaluation

Baseline DCED 0.982 0.962 0.763 0.854 0.725
Proposed GCN152-TL-A-FF 0.986 0.982 0.918 0.956 0.844
GCN152-TL-A-FF-DA 0.989 0.957 0.934 0.949 0.868

® Each class

Our Proposed won DECD 5 out of 5 classes

Page 116



E L .t Corpus 1 Experiment 5:
va ua | O n Nan, Thailand Depthwise Atrous Convolution
r
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Fvaluation

Baseline

P1

P2

P3

P4

P5

DCED
Enhanced GCN +

Deeper Head Network
+ Attention

+ Transfer Learning

+ Feature Fusion

+ Depthwise Atrous

Convolution

0.874

0.884

0.917

0.918

0.927

0.936

1.043 %

3.288 %

0.114 %

0.843 %

0.933%

Corpus 1 Summa
Nan, Thailand Y

4 N

The most impactful method:
Channel Attention

- /
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2nd Corpus
ISPRS Vaihingen




- Corpus 1 Corpus 3
Evaluation

Corpus 2
ISPRS Vaihingen

Baseline DCED 0.867 0.849 0.854

0 Beddar Proposed - Res50 GCN 0.872 0.852 0.858
e Recall - Res101 GCN 0.850 0.854 0.866
® F1l-score - Res152 GCN 0.873 0.864 0.868
- Res152 GCN-A 0.875 0.869 0.874

TL Res152 GCN-A 0.897 0.877 0.881

TL Res152 GCN-A-FF 0.896 0.904 0.905

TL Res152 GCN-A-FF-DA 0.923 0.900 0911

Result: Our proposed method yields a higher F1 Score from baseline method at 5.7% Page 120




- Corpus 1 Corpus 2 Corpus 3
Evaluation

Baseline DCED 0.872 0.893 0.841 0.914 0.815

Proposed GCN50 0.876 0.873 0.857 0.953 0.803

GCN101 0.941 0.913 0.742 0.904 0.699

 EEiEek GCN152 0.810 0.963 0.895 0.912 0.806
GCN152-A 0.886 0.928 0.811 0.895 0.820

GCN152-TL-A 0.871 0.916 0.890 0.918 0.874

GCN152-TL-A-FF 0.928 0.976 0.926 0.968 0.898

GCN152-TL-A-FF-DA 0.907 0.979 0.927 0.972 0.910
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- Corpus 2 Experiment 1:
Fvaluation

Baseline DCED 0.867 0.849 0.854
. » Proposed : Res50 GCN 0872 0852 ' 0858 !
Precision | W
e Recall : Res101 GCN 0.850  0.854  0.866
Res152 GCN 0873  0.864 _ 0.868

® Fl-score

e GCN50 overcame DECD ~ 0.386 % F1

e GCN152 overcame DECD ~ 1.366 % F1
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- Corpus 2 Experiment 1:
Eva LU atl O ﬂ How it impacts modern and over-deeper backbone?

Baseline DCED 0872 0893 0841 0914 0815
Proposed GCN50 0876 0873  0.857 0.953 . 0803

GCN101 0.941 0913 0742 0904 0699

* Eachclass GCN152 0810 . 0.963 | : 0.895 0912 . 0.806

GCN Family won DECD 5 out of 5 classes
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E L .t Corpus 2 Experiment 1:
va u a | O n ISPRS Vaihingen How it impacts modern and over-deeper backbone?
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- Corpus 2 Experiment 1:
Eva LU atl O ﬂ How it impacts modern and over-deeper backbone?

Target Image GCN50 GCN101 GCN152
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- Corpus 2 Experiment 2:
Fvaluation

Baseline DCED 0.867 0.849 0.854
. " Proposed : Res152 GCN 0873 0864 T 0868 |
Precision |
Res152 GCN-A 0875 0869  0.874

® Recall

® Fl-score

e GCN152-A overcame DECD ~ 1.916 % F1

e GCN152-A overcame GCN152 ~ 0.55 % F1
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- Corpus 2 Experiment 2:
Fvaluation

Baseline DCED 0.872 0.893 0.841 0.914 0.815
Proposed GCN152 0.810 0.963 0.895 0.912 0.806
GCN152-A 0.886 0.928 0.811 0.895 0.820

® Each class

Our Proposed won DECD 4 out of 5 classes
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- Corpus 1 Experiment 2:
Fvaluation

Target Image Baseline Method [ GCN152 GCN152-A
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- Corpus 2 Experiment 3:

Baseline DCED 0.867 0.849 0.854
. » Proposed : Res152 GCN-A 0875 0869 T 0874 !
Precision | W |

TL Res152 GCN-A 0.897 0877  0.881

® Recall

® Fl-score

e GCN152-A-TL overcame DECD ~ 2.642 % F1

 GCN152-A-TL overcame GCN152-A~ 0.726 % F1
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- Corpus 2 Experiment 3:

Baseline DCED 0.872 0.893 0.841 0.914 0.815
Proposed GCN152-A 0.886 0.928 0.811 0.895 0.820
GCN152-TL-A 0.871 0.916 0.890 0.918 0.874

® Each class

Our Proposed won DECD 5 out of 5 classes
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- Corpus 2 Experiment 3:

Target Image Baseline Method [10 GCN152-A GCN152-A-TL

B — M, .l-'“!-"o

1=

- ==
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- Corpus 2 Experiment 4:
Fvaluation

® Precision

° Baseline DCED 0.867 0.849 0.854
Recall
_ el )
® Fl.-ccore Proposed TL Res152 GCN-A 0.897 0.877 L 288i k
TL Res152 GCN-A-FF 0.896 0.904 0.905

« GCN152-A-TL-FF overcame DECD ~ 5.097 % F1

 GCN152-A-TL-FF overcame GCN152-A-TL ~ 2.455 % F1
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- Corpus 2 Experiment 4:
Fvaluation

Baseline DCED 0.872 0.893 0.841 0.914 0.815
Proposed GCN152-TL-A 0.871 0.916 0.890 0.918 0.874
GCN152-TL-A-FF 0.928 0.976 0.926 0.968 0.898
°

Each class

Our Proposed won DECD 5 out of 5 classes
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- Corpus 2 Experiment 4:
Fvaluation




- Corpus 2 Experiment 5:
Evaluation

® Precision

° Baseline DCED 0.867 0.849 0.854
Recall
“A- 0905 !
® Fl.-ccore Proposed TL Res152 GCN-A-FF 0.896 0.904 L i%i )
TL Res152 GCN-A-FF-DA 0.923 0.900 0.911

« GCN152-A-TL-FF-DA overcame DECD ~ 5.67 % F1

 GCN152-A-TL-FF-DA overcame GCN152-A-TL-FF ~ 0.573 % F1
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- Corpus 2 Experiment 5:
Evaluation

Baseline DCED 0.872 0.893 0.841 0.914 0.815
Proposed GCN152-TL-A-FF 0.928 0.976 0.926 0.968 0.898
GCN152-TL-A-FF-DA 0.907 0.979 0.927 0.972 0.910

® Fach class

Our Proposed won DECD 5 out of 5 classes
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- Corpus 2 Experiment 5:
Evaluation




Fvaluation

Baseline

P1

P2

P3

P4

P5

DCED
Enhanced GCN +

Deeper Head Network

+ Attention
+ Transfer Learning

+ Feature Fusion

+ Depthwise Atrous

Convolution

0.854

0.868

0.874

0.881

0.905

0.911

1.366 %

0.550 %

0.726 %

2.455 %

0.573 %

Corpus 2 Summary
ISPRS Vaihingen

-~

-

The most impactful method:

~

Feature Fusion

/
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3rd Corpus
Isan, Thailand (Medium Resolution Corpus)




- Corpus 1 Corpus 2 Corpus 3
Evaluation

Baseline DCED 0.861 0.782 0.810

e  Precision Proposed - Res50 GCN 0.873 0.872 0.872
e Recall - Res101 GCN 0.865 0.884 0.874
® [F1l.score - Res152 GCN 0.860 0.898 0.876
: Res152 GCN-A 0.865 0.891 0.877

TL Res152 GCN-A 0.890 0.923 0.899

TL Res152 GCN-A-FF 0.919 0.934 0.929

TL Res152 GCN-A-FF-DA 0.945 0.938 0.947

Result: Our proposed method yields a higher F1 Score from baseline method at 13.7% Page 140




- Corpus 1 Corpus 2 Corpus 3
Evaluation

Baseline DCED 0.905 0.815 0.820

Proposea GCN50 0.933 0.778 0.888

GCN101 0.837 0.815 0.862

- lmen clese GCN152 0.910 0.721 0.879
GCN152-A 0.858 0.768 0.854

GCN152-TL-A 0.919 0.899 0.919

GCN152-TL-A-FF 0.952 0.925 0.931

GCN152-TL-A-FF-DA 0.969 0.948 0.938
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- Corpus 3 Experiment 1:
Fvaluation

Baseline DCED 0.861 0.782 0.810
r . [ \
. . Proposed - Res50 GCN
® Precision P 0813 0872 0_873 J
e Recall - Res101 GCN 0.865 0.884 0874

e GCN50 overcame DECD ~6.145 % F1

e GCN152 overcame DECD ~ 6.601 % F1
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- Corpus 3 Experiment 1:
Eva LU atl O ﬂ How it impacts modern and over-deeper backbone?

Baseline DCED 0.905 0.815 0.820

Proposed GCN50 0.933 0.778 0.888

. GCN101 0.837 0.815 0.862
Fach class GCN152 0.910 0.721 0.879

« GCN Family won DECD 3 out of 3 classes
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Experiment 1:

10]

How it impacts modern and over-deeper backbone?
-

Baseline Method [

Corpus 3
Thailand

Fvaluation
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- Corpus 3 Experiment 1:
Fvaluation

Target Image GCN50 GCN101 GCN152
W 1| I G ‘«. T o ¢V - Y LY -
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- Corpus 3 Experiment 2:
Fvaluation

Baseline DCED 0.861 0.782 0.810
r ] L] \
. . Proposed - Res152 GCN
®* Precision P 560 R S
Res152 GCN-A 0.865 0.891 0.877

® Recall

® Fl-score

e GCN152-A overcame DECD ~ 6.681 % F1

e GCN152-A overcame GCN152 ~ 0.081 % F1
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- Corpus 3 Experiment 2:
Fvaluation

Baseline DCED 0.905 0.815 0.820
Proposed GCN152 0.910 0.721 0.879
GCN152-A 0.858 0.768 0.854

® Each class

* Qur Proposed won DECD 2 out of 3 classes
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- Corpus 3 Experiment 2:
Fvaluation

Target Image Baseline Method [10 GCN152 GCN152-A
W 1| [ § i v Y N 4 v 4 F w
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- Corpus 3 Experiment 3:

Baseline DCED 0.861 0.782 0.810
r | | \
. . Proposed - Res152 GCN-A
® Precision P 0.865 0.691 § 0_871 7
TL Res152 GCN-A 0.890 0.923 0.899

® Recall

® Fl-score

e GCN152-A-TL overcame DECD ~ 8.875 % F1

 GCN152-A-TL overcame GCN152-A~ 2.194 % F1
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- Corpus 3 Experiment 3:

Baseline DCED 0.905 0.815 0.820
Proposed GCN152-A 0.858 0.768 0.854
GCN152-TL-A 0.919 0.899 0.919

® Each class

Our Proposed won DECD 3 out of 3 classes
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- Corpus 3 Experiment 3:

Target Image Baseline Method [10 GCN152-A GCN152-A-TL
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- Corpus 3 Experiment 4:
Fvaluation

® Precision

Baseline DCED
Y Recall 0.861 0.782 0.810
_ =y
° F1-ccore Proposed TL Res152 GCN-A 0.890 0.923 0_892 )
TL Res152 GCN-A-FF 0.919 0.934 0.929

 GCN152-A-TL-FF overcame DECD ~ 11.829 % F1

 GCN152-A-TL-FF overcame GCN152-A-TL ~ 2.954 % F1
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- Corpus 3 Experiment 4:
Fvaluation

Baseline DCED 0.905 0.815 0.820
Proposed GCN152-TL-A 0.919 0.899 0.919
GCN152-TL-A-FF 0.952 0.925 0.931

® Each class

* Qur Proposed won DECD 3 out of 3 classes
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- Corpus 3 Experiment 4:
Fvaluation

Target Image Baseline Method [ GCN152-A-TL GCN152-A-TL-FF
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- Corpus 3 Experiment 5:
Evaluation

® Precision

Baseline DCED
° Recall 0.861 0.782 0.810

Proposed TL Res152 GCN-A-FF 0.919 0.934 r-()_929_ )

__J

TL Res152 GCN-A-FF-DA 0.945 0.938 0.947

® Fl-score

 GCN152-A-TL-FF-DA overcame DECD ~ 13.701 % F1

 GCN152-A-TL-FF-DA overcame GCN152-A-TL-FF ~ 1.872 % F1
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- Corpus 3 Experiment 5:
Evaluation

Baseline DCED 0.905 0.815 0.820
Proposed GCN152-TL-A-FF 0.952 0.925 0.931
GCN152-TL-A-FF-DA 0.969 0.948 0.938

® Each class

Our Proposed won DECD 3 out of 3 classes
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E L .t Corpus 3 Experiment 5:
va u a | O n Isan, Thailand Depthwise Atrous Convolution
¢ ‘ " “ Y ‘ ‘

"‘v'f !

-
-
L

--‘--_*—-‘- l_‘
| pe——_—
- o

#
nd




Fvaluation

Baseline

P1

P2

P3

P4

P5

DCED
Enhanced GCN +

Deeper Head Network
+ Attention

+ Transfer Learning

+ Feature Fusion

+ Depthwise Atrous

Convolution

0.810

0.876

0.877

0.899

0.929

0.947

6.601 %

0.081 %

r————

| 2194 % |

) S ——

2.954 %

1.872 %

Corpus 3 Summa
Isan, Thailand Y

-

~

The most impactful method:

Feature Fusion

And Transfer Learning

(from Nan Corpus)
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Recap: The Results (Summary)

GCN = Global Conv Block P1 P2 P3 P4 P5
Backbone Attention Transfer Learning  Feature Fusion  Depthwise Atrous

A = Channel Attention Block (A) (TL) (FF) (DA)

TL = Transfer Learning * Corpus 1: Nan Province (Medium Resolution Corpus)

H17 S RS el Skl * GCN152-A-TL-FF-DA overcame DECD ~ 6.221 % F1

DA = Depthwise Atrous * The most impactful method: Channel Attention

* Corpus 2: ISPRS Vaihingen (Very-High Resolution Corpus)
* GCN152-A-TL-FF-DA overcame DECD ~ 5.67 % F1
* The most impactful method: Feature Fusion

* Corpus 3: Isan Region (Medium Resolution Corpus)
* GCN152-A-TL-FF-DA overcame DECD ~ 13.701 % F1

* The most impactful method: Feature Fusion and Transfer Learning from Nan
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Objective

Objective of research

The objectives of this research are as follows:

1. To propose a new deep learning architecture to sesment multi-objects from aerial and satellite

images (remote sensing corpora)

2. To explore the effectiveness of proposing new deep learning techniques for semantic

segmentation particularly on remote sensing corpora
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Objective

Scope of research

1. Evaluate the proposed new deep learning on ISPRS Vaihingen corpus (a city district of Stuttgart,
Germany) and GISTDA corpora (GISTDA Nan province and Isan zone corpora) with Encoder-Decoder
baseline model
* Nan province corpora have five classes: agriculture, forest, miscellaneous, urban, and water
* Isan zone corpora have three classes: corn, pineapple, and rubber tree

2. Evaluate the proposed deep learning on reliable measurements such as Precision, Recall, and F1-

score
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Procedure

Procedure

1. Research modern deep learning techniques

2. Research deep learning on remote sensing images

3. Literature review

4. Request and collect data sets from ISPRS corpus and private corpus
(GISTDA)

5. Design and implement the proposed and baseline deep learning.
6. Conclude and prepare for 15t ISI journal
7. Write and thesis proposal examination
8. Evaluate and improve my new deep learning architecture

9. Conclude and prepare for 2" S| journal

10. Write and defend the dissertation
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Conclusions

Title: Semantic Segmentation on Remotely Sensed Images Using Deep Convolutional Encoder-Decoder Neural Network

*  What: Semantic Segmentation on Remotely Sensed Corpora
*  Why: The previous methods suffer from accuracy performance
*  How: Deep Convolutional Encoder-Decoder Neural Network
* Proposed Methods (What’s New):
* (1) Varying Backbones (2) Channel Attention (3) Domain-specific Transfer Learning (4) Feature Fusion (5) Depthwise Atrous Conv

e Result:

*  The results demonstrate that the “GCN152-TL-A-FF-DA” model significantly exceeds all baselines. It is the victor in all data sets
and exceeds more than 90% of F1: 0.9114, 0.9362, and 0.9111 of the Landsat-8w3c, Landsat-8w5c, and ISPRS Vaihingen.

*  Moreover, it reaches an accuracy surpassing 90% in almost all classes.

e  Future Plan:

. Efficient Uncertainty Estimation for Semantic Segmentation (Aleatoric and Epistemic) | Explainable Al Page 165



Efficient Uncertainty Estimation for Semantic Segmentation (Aleatoric and Epistemic)

Future Plan: Huang, Po-Yu, et al. "Efficient uncertainty estimation for semantic segmentation in videos." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

What kind of uncertainty can we model?

Epistemic uncertainty is moaeling uncertainty
Aleatoric uncertainty is sensing uncertainty

(a) Input Image (b) Ground Truth (¢) Semantic Segmentation  (d) Aleatoric Uncertainty (¢) Epistemic Uncertainty Pa ge 1 66




Efficient Uncertainty Estimation for Semantic Segmentation (Aleatoric and Epistemic)

Future Plan: Huang, Po-Yu, et al. "Efficient uncertainty estimation for semantic segmentation in videos." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Modeling Epistemic Uncertainty with Bayesian Deep Learning

We can model epistemic uncertainty in deep learning models using

Monte Carlo dropout sampling at test time.

Dropout sampling can be interpreted as sampling from a distribution over models.

Segmentation

Convolutional Encoder-Decoder Stochastic Dropout

Samples

Input

mean
»>

Model Uncertainty

vanance. . 3 ;‘
'.'n*r': -. . :l l
"y _» p ' .
RGB Image B conv + Batch Normalisation + RelU
B oropout [l Pooling/Upsampling Softmax y
Alex Kendall, Vijay Badrinarayanan and Roberto Cipolla Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Pa ge 1 67

Scene Understanding. arXiv preprint arXiv:1511.02680, 2015.



Efficient Uncertainty Estimation for Semantic Segmentation (Aleatoric and Epistemic)

Future Plan: Huang, Po-Yu, et al. "Efficient uncertainty estimation for semantic segmentation in videos." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Modeling Aleatoric Uncertainty with Probabilistic Deep Learning

Deep Learning Probabilistic Deep Learning

Model [$1=f(x) [9,6%] = f(x)

5 ly — 91 -
Regression Loss = |ly — 7l Loss = 252 T log 2

=3 +e€ €. ~ N(0,6%)
Classification | Loss = SoftmaxCrossEntropy(9,)

1
Loss = FZ SoftmaxCrossEntropy(¥;)
t

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? arXiv preprint 1703.04977, 2017. Pa ge 168
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Detail of All Corpora (1) Support Value

ISPRS

Class
Class
Class
Class
Class

NAN

Class
Class
Class
Class
Class

H W N = O

H W N R O

Support
778361
920658
332791
393875
32939

Support

443917

1022641
20039
61773
7086

Impervious Surfaces

Buildings

Low Vegetation

Tree

Car

ISAN

Class
Class
Class
Class

LC129048

w N = O

Support
333917
892808
32180
523588

Miscellaneous

Para Rubber

Pine Apple

Corn
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Detail of All Corpora (2) Training Size

Public Data Set: 2D Semantic Labeling - Vaihingen
- Training Set: 512x512 (210 Images)
- Validation Set: 512x512 (30 Images)
- Testing Set: 512x512 (30 Images)
Private Data Set: GISTDA Nan Province Corpus
- Training Set: 512x512 (1,770 Images)
- Validation Set: 512x512 (49 Images)
- Testing Set: 512x512 (100 Images)
Private Data Set: GISTDA ISAN zone Corpus
- Training Set: 512x512 (2,115 Images)
- Validation Set: 512x512 (49 Images)
- Testing Set: 512x512 (100 Images)

NAN

Class
Class
Class
Class
Class

ISAN

Class
Class
Class
Class

H W NP O

LC129048

w N = O

Support

443917

1022641
20039
61773
7086

Support
333917
892808
32180
523588

Miscellaneous

Para Rubber

Pine Apple

Corn
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ResNet - Architecture ResNet-50

PRETRAINED MODEL

: layer name | output size 18-layer 34-layer S50-layer 101-layer 152-layer
Satellite convl | 112x112 ~ 7x7. 64, stride 2
3 %3 max pool. stride 2
[ Ix1.64 | [ 1x1.64 | [ 1x1,64 |
om2.x | 5 .6 : :
etk O%b [ :":244 sz [ :":z ]x3 3%3.64 | x3 3x3.64 | x3 31x3.64 | x3
iy i | 1x1,256 | | 1x1,256 | | 1x1,256 |
) ; ) . [ 131 128" [ 1x1, 128 ] [ 1x1, 128 ]
2 3 %3,
convi.x | 28x28 2*?:02 %2 nglﬁﬁ x4 | | 3x3,128 | x4 3x3. 128 | x4 3x3.128 | x8
i S | 1x1,512 | 1x1,512 | | 1x1,512
i . i . [ 1x1,256 | 1x1,256 | 1x1.256 |
2 3 2
RecNet 50 s | adscra ::: ;:2 <2 ;z: 522 %6 || 3x3.256 |x6|| 3x3.256 |x23 || 3x3.256 |x36
s s | | 1x1.1024 | 1x1.1024 1x1,1024 |
) . ) . F 882 1x1,512 1x1,512
3x3.512 3%3,512 7 . |
ResNet 101 convy_x Tx7 3x3. 512 %2 33,512 %3 33582 | %3 3x3, 512 %3 3x3.512 %3
. . ) . | 1x1.2048 I x1,2048 1x1.2048
1x1 average pool. 1000-d fc. softmax
ResNet 152 FLOPs 1.8 x 10" 3.6x10" 3.8x10" 7.6x 10 11.3x109
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Problem Solve: Unbalanced Class

f Zerphed commented on May 30, 2017 -
s o

@JeffKo427 Thanks! This is in fact what | am using right now. The losses seem quite bit, but | guess
that was to be expected:

def weighted_pixelwise_crossentropy(class_weights):

def loss(y_true, y_pred):
epsilon = _to_tensor(_EPSILON, y_pred.dtype.base_dtype)

y_pred = tf.clip_by_value(y_pred, epsilon, 1. - epsilon)
return — tf.reduce_sum(tf.multiply(y_true * tf.log(y_pred), class_weights))

return loss

https://sithub.com/keras-team/keras/issues/6261 Page 186
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How does mean image subtraction work?

2 Answers

active oldest votes

In deep learning, there are in fact different practices as to how to subtract the mean image.

7 Subtract mean image

The first way is to subtract mean image as @lejlot described. But there is an issue if your dataset
images are not the same size. You need to make sure all dataset images are in the same size before

V using this method (e.g., resize original image and crop patch of same size from original image). It is
used in original ResNet paper, see reference here.

Subtract the per-channel mean

The second way is to subtract per-channel mean from the original image, which is more popular. In
this way, you do not need to resize or crop the original image. You can just calculate the per-channel
mean from the training set. This is used widely in deep learning, e.g, Caffe: here and here. Keras:
here. PyTorch: here. (PyTorch also divide the per-channel value by standard deviation.)

share improve this answer edited Dec 6 '17 at 1:18 answered Dec 5 '17 at 9:49

jdhao
5,760 2 » 36 #60

https://stackoverflow.com/gquestions/44788133/how-does-mean-image-subtraction-work
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Other Layers

* Interpolation Layer: Interpolation layer

* performs resizing operation along the spatial dimension.

* In our network, we use bilinear interpolation.

* Elementwise Layer: Elementwise layer

* performs elementwise operations on two or more previous layers, in which the feature maps must be of the

same number of channels and the same size.

*  There are three kinds of elementwise operations:

. product, sum, max.

. In our network, we use sum operation.
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Related Theory

Attention

* (1) Computer Vision Tasks

e (2) CNNs
e Traditional CNNs

* Deep Learning Layers
* (3) Transfer Learning
* (4) Channel Attention
* (5) Feature Fusion
e (6) Design CNNs

* (7) Depthwise Atrous

Refers to Squeeze-and-Excitation Networks and BiseNet

® Attention is helpful to focus on what we want
® We utilize channel attention to select the

important features
F, (W)

X U F, () » N ———
/ 1x1%xC 1x1xC
I H' F”' H Fscale (1) ]
W' W
€ C
high attention

|+ owatenion | | l
She is eating a green apple.

One word “attends” to other words in the same sentence differently.
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Related Theory

» (1) Computer Vision Tasks ® Attention is helpful to focus on what we want
e (2) CNNs ®* We utilize channel attention to select the
e Traditional CNNs important features
* Deep Learning Layers X v yww
* (3) Transfer Learning | F, - -
* (4) Channel Attention — W - W
* (5) Feature Fusion = R TR o e
* (6) Design CNNs ' . ;%-_, i.% ) | § L é :
* (7) Depthwise Atrous = = § | 2

Refers to Squeeze-and-Excitation Networks and BiseNet oo oo oo oo e eemmieeooo ; Page 190



Related Theory

Attention

* (1) Computer Vision Tasks

® Attention is helpful to focus on what we want

. ® We utilize channel attention to select the
(2) CNNs
e Traditional CNNs important features
* Deep Learning Layers ﬂ f(x)
trans .
* (3) Transfer Learning convolution # Leleouy L . attﬁi:;aon
feature maps (x) f
. & e ® HoLoms self-attention
* (4) Channel Attention M e [, feature maps (0)
* (5) Feature Fusion Ixlcony - ® THH
e (6) Desien CNNs
: hx) [

* (7) Depthwise Atrous

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

ﬂ

I1x1conv
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Related Theory Attention

» (1) Computer Vision Tasks ® Matrix Calculation of Self-Attention
° The first step is to calculate the Query, Key, and Value matrices.
¢ (2) CNNs ° We do that by packing our embeddings into a matrix X, and multiplying it by the

. weight matrices we’ve trained (WQ, WK, WV).
* Traditional CNNs

X wa Q
* Deep Learning Layers |
* (3) Transfer Learning Q KT "
* (4) Channel Attention X WK K o ( x )
ismoid
* (5) Feature Fusion " - Vi
* (6) Design CNNs ; " | _
« (7) Depthwise Atrous ) :
http://jalammar.github.io/illustrated-transformer/ Page 192
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ResNet

weight layer
F(x) Lrelu N
weight layer identity
e (1) Computer Vision Tasks Fix) 4% LT a _
e (2) CNNs Figure 2. Residual learning: a building block. = SIS P

* Traditional CNNs

1. The identity shortcuts (x) can be directly used when the input and

* Deep Learning Layers

output are of the same dimensions.

* (3) Transfer Learning

y = F(x, {W:}) +x. (1)
® (4) C h a n n e L Atte nt | O n Residual block function when input and output dimensions are same e I ,:f’:;,ﬁ :T:}';:T: ﬁ?‘ '
[
. . . . . l
° ( 5) I: e a-t ure I: usion 2. When the dimensions change, A) The shortcut still performs identity |

mapping, with extra zero entries padded with the increased dimension. B)

The projection shortcut is used to match the dimension (done by 1*1 conv)

¢ (6) DeS | g N C N N S using the following formula

afps
e

¢ (7) Depthvvise Atrous y = F(x,{W:}) + W.x. (2)

Residual block function when the input and output dimensions are not same.

ofps
el

https://medium.com/@14prakash/ Page 193
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4.4. Evaluation metrics

Eva Lu atl O n To assess the quantitative performance, two overall benchmark
metrics are used, i.e., F1 score (F1) and intersection over union (IoU).
F1 is defined as

Pre x Rec t t

Bl =3 5 poe. B pepe. B (9)
>>> from sklearn.metrics import fl_score Pre + Rec tp + fp tp + fn
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pr'ed = [@’ 2’ 1: 0: 0’ 1] T ST
>>> f1_score(y_true, y_pred, average='macro') Here, tp, fp and fn are the number of true positives, false positives
0.26... . and false negatives, respectively.
>>> fl_score(y_true, y_pred, average='micro') IoU is defined as:
0.33::. '
>>> fl_score(y_true, y_pred, average='weighted')
0.26... |'pmﬂ’Pgt|
>>> fl_score(y_true, y_pred, average=None) [0U(Pm, Pg) = , (10)
array([0.8, 0. , 0. 1) |Pm U P

where Py is the set of ground truth pixels and Py, is the set of pre-
diction pixels, ‘1" and ‘U’ denote intersection and union operations,
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1. Micro-average Method

In Micro-average method, you sum up the individual true positives, false positives, and false
negatives of the system for different sets and the apply them to get the statistics. For example, for
a set of data, the system's

True positive (TP1l) = 12
False positive (FP1) = 9
o o False negative (FN1) = 3
>>> from sklearn.metrics import fl_score 2
>>> y_true = [0, 1, 2, @, 1, 2] . , 5 - ; ik
>>> y_pred = [0, 2, 1, 0, 0, 1] Then precision (P1) and recall (R1) will be 57.14% = ——-~—- and 80% = TPI+FNT
=y '
8>;6F1"Score(y‘true’ y-pred, average='macro ) and for a different set of data, the system's
N4, v S s '
>>> fl_score(y_true, y_pred, average='micro') e ot ive 2] = ne
B:33.:. X False positive (FP2) = 23
>>> fl_score(y_true, y_pred, average='weighted') False negative (FN2) = 9
020
>>> Fl_score(y_tr'ue > y_pr'ed ’ aver‘age=None) Then precision (P2) and recall (R2) will be 68.49 and 84.75

array([0.8, 0. , 0. 1)

Now, the average precision and recall of the system using the Micro-average method is

. o = TPI+TP2 = 12450 = ;

Micro-average of precision = S50 s Fm = Trrsoaesas = 09.96
- e TPI+TP2 _ 12450 _

Micro-average of recall = 5 —"0" - = i = 83.78

The Micro-average F-Score will be simply the harmonic mean of these two figures.
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Fvaluation

>>> from sklearn.metrics import fl_score

>>> y_true = [0, 1, 2, 0, 1,
>>> y_pred = [0, 2, 1, 0, O,
>>> fl_score(y_true, y_pred,
0.26. ..

>>> fl_score(y_true, y_pred,
0.33.:.

>>> fl_score(y_true, y_pred,
0.26...

>>> fl_score(y_true, y_pred,
array([0.8, 0. , 0. 1)

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

2]

1]

average="macro')
average="micro')
average='weighted')

average=None)

2. Macro-average Method

The method is straight forward. Just take the average of the precision and recall of the system on
different sets. For example, the macro-average precision and recall of the system for the given
example is

Macro-average precision = £3£2 = LSS — 6 g)

Macro-average recall = Rl;’u = 80”;4'75 = 82.25

The Macro-average F-Score will be simply the harmonic mean of these two figures.

Suitability Macro-average method can be used when you want to know how the system performs
overall across the sets of data. You should not come up with any specific decision with this
average.

On the other hand, micro-average can be a useful measure when your dataset varies in size.

share improve this answer follow edited Nov 8 '17 at 14:44 answered Dec 30 '16 at 9:53
Efoxéa jagg w Rahul Reddy Vemireddy
KXR 103 o1 B 605 «4 6
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Retated Th eory Traditional Image Segmentation Network

* (1) Computer Vision Tasks

. - : : Upsampling:
Dounsampling:  Desknetor os o burh of convoonl leyrs i ELCCG Y i
* (2) CNNs cgr?vlcr)ll%tisc;r:l " ' transpose convolution

* Traditional CNNs

G4

37  Med-res: Med-res:
@4 | D,xH/4 x W/4 D, x H/4 x W/4

* Deep Learning Layers

* (3) Transfer Learning

Low-res: >
AV D, x H/4 x W/4 b
e (4) Channel Attention High-res: High-res: Predictions:
3xHXW D, xHI2xW/2 D x H/Z x W/2 HxW
e (5) Feature Fusion
| Encoder Network | | Decoder Network |

e (6) Design CNNs

| Deep Encoder-Decoder Network (DCED) |

http://cs231n.stanford.edu/ Page 197
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Retated Th eory Traditional Image Segmentation Network: Sample (1)

(1) Computer Vision Tasks | Encoder Network | | Decoder Network |

FCN
 (2) CNNs | Deep Encoder-Decoder Network (DCED) |

* Traditional CNNs

° Deep Learning Layers forward /inference

<%

backward/learning

* (3) Transfer Learning

e (4) Channel Attention

e (5) Feature Fusion o0 71

o©

* (6) Design CNNs

http://cs231n.stanford.edu/ Page 198



http://cs231n.stanford.edu/

Retated Th eory Traditional Image Segmentation Network: Sample (2)

(1) Computer Vision Tasks | Encoder Network | | Decoder Network |

SegNet
 (2) CNNs | Deep Encoder-Decoder Network (DCED) |

* Traditional CNNs

N Deep Learning Layers Input Convolutional Encoder-Decoder Output

KN

& Pooling Indices

* (3) Transfer Learning

e (4) Channel Attention

e (5) Feature Fusion

RGB |mage I Cconv + Batch Normalisation + RelU Segmentation
Il Pooling [ Upsampling Softmax

e (6) Design CNNs

http://cs231n.stanford.edu/ Page 199
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Retated Th eory Traditional Image Segmentation Network: Sample (3)

(1) Computer Vision Tasks | Encoder Network | | Decoder Network |
UNet
e (2) CNNs | Deep Encoder-Decoder Network (DCED) |
* Traditional CNNs “ o ; b
* Deep Learning Layers input o
|matgi)|: : “ I™I™I*| segmentation
. all € ¢ map
* (3) Transfer Learning
° o 3'128128
e (4) Channel Attention
e (5) Feature Fusion HllE af :
) 2 > . > "ér &-‘& = conv 3x3, ReLU
¢ (6) DeSIgﬂ CNNS e . o SRS =+ copy and crop
%i.-.?. > i el § max pool 2x2
8 39 10 5 B 4 up-conv 2x2
g-';_':_ =» conv 1x1

http://cs231n.stanford.edu/ Page 200
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Retated Th eory Traditional Image Segmentation Network: Sample (4)

(1) Computer Vision Tasks | Encoder Network | | Decoder Network |

PSPNet
 (2) CNNs | Deep Encoder-Decoder Network (DCED) |

* Traditional CNNs

* Deep Learning Layers T - @ﬂﬁﬂj,
* (3) Transfer Learning AL , L\ i S
. | | " v J“'f. ‘ "I_> _é"_’— \‘\" i b M \ \-A e — % —
* (4) Channel Attention = . :
¢ (5) Feature Fusion ti B iﬂ CONCAT
 (6) Design CNNs (a) Input Image (b)FeatureMap (c)Pyramid Pooling Module (d) Final Prediction

http://cs231n.stanford.edu/ Page 201
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Retated Th eory Traditional Image Segmentation Network: Sample (5)

(1) Computer Vision Tasks | Encoder Network | | Decoder Network |

Mask R-CNN
 (2) CNNs | Deep Encoder-Decoder Network (DCED) |

* Traditional CNNs

* Deep Learning Layers

* (3) Transfer Learning

e (4) Channel Attention

% U box

RolAlign

\ 4

e (5) Feature Fusion

conv’ | conv LN

e (6) Design CNNs

http://cs231n.stanford.edu/ Page 202
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Retated Th eer ResNet (Microsoft)

Shallow Network Deeper Network

* (1) Computer Vision Tasks ﬂ ﬂ
* (2) CNNs

N layer neural N layer neural

| networ e Revolution of Depth

* Traditional CNNs ‘ < 152 layers
A
. ﬂ ﬂv F(x
* Deep Learning Layers .

* (3) Transfer Learning G(y s | (i

i I AAAAA l 8 layers 8 layers | shallow

ILSVRC'1S  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

e (4) Channel Attention

e (5) Feature Fusion

ImageNet Classification top-5 error (%)

* (6) Design CNNs y=F(G(M(x)

G and M act as Identity Functions. Both the
Networks Give same output

http://cs231n.stanford.edu/ Page 203
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etatEd Th eOry ResNet (Microsoft)

* (1) Computer Vision Tasks Plain Block Residual Block
i

Revolution of Depth

*  Traditional CNNs =
* Deep Learning Layers I - Stacked neural

* (2) CNNs

. network layers |
22 Iayers‘ 191ayers Y

e (3) Transfer Learning o B sw - u N

il - |
+  (4) Channel Attention g s g e s o e

ImageNet Classification top-5 error (%)
: =F(x) =F(x)+x
 (5) Feature Fusion ! /
. Hard to get F(x)=x and make y=x Easy to get F(x)=0 and make y=x

¢ (6) Desugn CNNs an identity mapping an identity mapping

Encoder Network (VGG (Residual) Style)

https://medium.com/@14prakash/ Page 204
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Related Theory

* (1) Computer Vision Tasks * More layers is better
e (2) CNNs *  but because of the vanishineg gradient problem
e Traditional CNNs * model weights of the first layers can not be updated

*  Deep Learning Layers correctly through the backpropagation of the error gradient

, *  the chain rule multiplies error gradient values lower than
* (3) Transfer Learning
one and then, when the gradient error comes to the first

* (4) Channel Attention layers, its value goes to zero

* (5) Feature Fusion * Objective of Resnet is preserve the gradient

¢ (6) Design CNNs y = F(x,{W;}) +x.

Page 205

https://medium.com/@14prakash/


https://medium.com/@14prakash/

Retated Th eory Depth-wise Separable Convolution

* (1) Computer Vision Tasks 7

e (2) CNNs
e Traditional CNNs

* Deep Learning Layers

* (3) Transfer Learning

e (4) Channel Attention

e (5) Feature Fusion

« (6) Depthwise Convolution

e (7) Design CNNs
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New Idea (1)

boundary

fixed convolution

normal angles

(normal estiqau'on) /

classification layer

0
(\.

fixed convolution
(normal estimation)

direction
boupdary
g classit. loss
ﬂ ‘ NMS loss refined A annotated
Ty labels ground-truth
active
€ — i
boundary detection chtgniosd
k <€ - >
networ NMS architecture
inference training

Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
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New Idea (1)

300X 300 9023 200 30000 Segmentation Output
300 %300 300X 300 /
- ‘ Encoder Decoder 150X150
Loss of
Sementation
: Loss of Edge Aware
Input Image 3 32 —_— = ] ! C———
: Regularization
32 32 ———
32
32 32 300 X300 Edge Output
300300
. 300X 300
L i
[ ] Conv+BN +ReLU I Softmax Prediction 160
- Conv I:] Unpooling Loss of Edge
B Max pooling B 1% 1 Cony
|:] Concat

Page 221

Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.



Outline | Related Theory

* Introduction

* Related Theory

* Related Works

* Methodology (Proposed Method)
* Experimental Results

* Objectives and Procedure

* Conclusions

e Publication and Reference
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Related Theory

e (1) Computer Vision Tasks

e (2) Deep Convolutional Neural Networks (CNNs)

e  Traditional CNNs

* Deep Learning Layers
e (3) Transfer Learning
* (4) Channel Attention
* (5) Feature Fusion
« (6) Depthwise Convolution

« (7) Design CNNs
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Related Theory

e (1) Computer Vision Tasks

* (2 CNNs Semantic Object Instance

Classification Segmentation Dataction Segmentation

e Traditional CNNs

* Deep Learning Layers

* (3) Transfer Learning

* (4) Channel Attention = ) =~ 13

e (5) Feat Fusi ’ DOG, DOG, CAT DOG, DOG, CAT
eature rusion \ y RS TREE, SKY VRN y

e (6) Depthwise Convolution No spatial extent No objects, just pixels Multiple Object S G

e (7) Design CNNs

http://cs231n.stanford.edu/ Page 224
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Related Theory

e (1) Computer Vision Tasks

* (2) CNNs Semantic

* Traditional CNNs Sefmentation

* Deep Learning Layers
* (3) Transfer Learning

e (4) Channel Attention

GRASS, CAT,
* (5) Feature Fusion  TREE, SKY
NG
e (6) Depthwise Convolution o vuecte: just pusels

e (7) Design CNNs

http://cs231n.stanford.edu/ Page 225
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Related Theory

* (1) Computer Vision Tasks
* (2) CNNs

* Traditional CNNs

* Deep Learning Layers

* (3) Transfer Learning

* (4) Channel Attention
Input Conv  Pool Conv Pool FC Output

e (5) Feature Fusion

* (6) Depthwise Convolution Encoder Network (VGG Style)

e (7) Design CNNs

Page 226



Related Theory

Low Level Features | Mid and High Level Features

* (1) Computer Vision Tasks

* (2) CNNs

logistic : 3

e de e - by e-w
R Ve 4 LJUTPUR LIassas
i Al

* Traditional CNNs

* Deep Learning Layers
* (3) Transfer Learning

e (4) Channel Attention

e (5) Feature Fusion

* (6) Depthwise Convolution

Filters from Zeiler + Fergus 2013

e (7) Design CNNs

https://blogs.technet.microsoft.com/machinelearning/2018/10/03/deep-learning-without-labels/ Page 227
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Related Theory

* (1) Computer Vision Tasks

Each feature can be discovered

* (2) CNNs without the need for seeing the
. Traditional CNNs exponentially large number of

confiqurations of the other features

Yoshua Bengi...

* Deep Learning Layers , _ o _
* Consider a network whose hidden units discover the following

_ features:
* (3) Transfer I_eamlng * Person wears glasses ;

e (4) Channel Attention * Personisfemale PN I |
* Personisa child -V |

e (5) Feature Fusion * Etc.
- If each of n feature requires O(k) parameters, need O(nk) examples
¢ (6) Depthvvise Convolution - Parallel composition of features: can be exponentially advantageous

- Non-distributed non-parametric methods would require O(n?) examples

e (7) Design CNNs

Credit: Prof Yoshua Bengio Page 228



Related Theory

* (1) Computer Vision Tasks

Mid-Level
Feature

Low-Level
Feature

High-Level

* (2) CNNs Feature

Trainable
Classifier

* Traditional CNNs

* Deep Learning Layers
* (3) Transfer Learning
* (4) Channel Attention
* (5) Feature Fusion
* (6) Depthwise Convolution

e (7) Design CNNs

Page 229
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Retated Th eory Traditional Image Segmentation Network

* (1) Computer Vision Tasks

. - : : Upsampling:
Dounsampling:  Desknetor os o burh of convoonl leyrs i ELCCG Y i
* (2) CNNs cgr?vlcr)ll%tisc;r:l " ' transpose convolution

* Traditional CNNs

G4

37  Med-res: Med-res:
@4 | D,xH/4 x W/4 D, x H/4 x W/4

* Deep Learning Layers

* (3) Transfer Learning

Low-res:
' g D,x H/4 x W/4 4
e (4) Channel Attention Input: High-res: High-res: Pradictichs:
3XxHXW D, xH2xW/2 D, x H/2 x W/2 Hx W
* (5) Feature Fusion
| Encoder Network | | Decoder Network |

* (6) Depthwise Convolution

. | Deep Encoder-Decoder Network (DCED) |
e (7) Design CNNs

http://cs231n.stanford.edu/ Page 230
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Rel,ated Theer Convolution Layer

* (1) Computer Vision Tasks =

Source pixel

/
3
/
L0
* (2) CNNs 1
_— ((1x3)+(0x0)+(1x1)+
o 2 (-2x2)+(0x6)+(2x2) +
*  Traditional CNNs ol (1x2)+(0x4) +(1x1) =-3
/
* Deep Learning Layers - 1| A
. A / /
- =i ////
: =
* (3) Transfer Learning =1 L+ T
= /:////
* (4) Channel Attention B g
|/ Convolution filter = // =] // == =
. 77 (Sobel Gx) =i =
‘ (5) Feature FUS|On '\““"'dendrites Destination pixel // // L
* (6) Depthwise Convolt I —1 L1 1
e (7) Design CNNs e L~
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/ Page 231
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etatEd Th eOry ResNet (Microsoft)

* (1) Computer Vision Tasks Plain Block Residual Block
i

Revolution of Depth

*  Traditional CNNs =
* Deep Learning Layers I - Stacked neural

* (2) CNNs

. network layers |
22 Iayers‘ 191ayers Y

* (3) Transfer Learning o B |
. _____ 8 layers Bhis [ . shallow .
® (4) C h a n n eL Atte nti O n ILSVRC'1S  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet
ImageNet Classification top-5 error (%)
: =F(x) =F(x)+x
 (5) Feature Fusion ! /
. . Hard to get F(x)=x and make y=x Easy to get F(x)=0 and make y=x
¢ (6) DepthW|Se Convolution an identity mapping an identity mapping

* (7) Design CNNs Encoder Network (VGG (Residual) Style)

https://medium.com/@14prakash/ Page 232
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Retated Th eory Max-Pooling and Max-Unpooling Layer

* (1) Computer Vision Tasks

Max Pooling

 (2) CNNs Remember which element was max! U:: ;jor;ﬁi(gr)mls":‘?om
ooling layer
* Traditional CNNs 11216 3 pooing 1y 002" 0
1 2 0 1 0 0
* Deep Learning Layers 3012 . il . e g
3 4
e (3) Transfer Learnin i R T 1% | Restofthe network RIS
S 7 3|4 8 3 0 0 4
¢ (4) Chaﬂﬂel AtteﬂtiOﬂ |nput: 4x4 Output: 2x2 Input: 2X2 OUtpUt: 4x4
* (5) Feature Fusion
Corresponding pairs of
* (6) Depthwise Convolution downsampling and
upsampling layers
e (7) Design CNNs
http://cs231n.stanford.edu/ Page 233
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Retated Th eory Learnable Up-sampling: Transpose Convolution

* (1) Computer Vision Tasks

* (2) CNNs

Sum where

Other names: 3 x 3 transpose convolution, stride 2 pad 1 output overlaps

e  Traditional CNNs -Deconvolution (bad)
-Upconvolution

-Fractionally strided

* Deep Learning Layers .nvolution
-Backward strided > Filter moves 2 pixels in
e (3) Transfer Learning convolution Input gives the output for every one
weight for pixel in the input
: filter

e (4) Channel Attention Stride gives ratio between

movement in output and
e (5) Feature Fusion Input

Input: 2 x 2 Output: 4 x 4
* (6) Depthwise Convolution
e (7) Design CNNs
Page 234
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Related Theory

Learnable Up-sampling: Transpose Convolution

* (1) Computer Vision Tasks

* (2) CNNs
e Traditional CNNs

* Deep Learning Layers
* (3) Transfer Learning
* (4) Channel Attention
* (5) Feature Fusion
* (6) Depthwise Convolution

e (7) Design CNNs

http://cs231n.stanford.edu/

Output
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ay
az H|bx
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Related Theory Other Layers

* (1) Computer Vision Tasks * Interpolation Layer: Interpolation layer
e (2) CNNs *  performs resizing operation along the spatial dimension.
e  Traditional CNNs * In our network, we use bilinear interpolation.

Input image

4

Learned Prior

* Deep Learning Layers

* (3) Transfer Learning

o1 f £ / 7 / 4
i ! (A \
En i Y
ke .

L

Bilinear Upsampling

e (4) Channel Attention

e (5) Feature Fusion

* (6) Depthwise Convolution ? ‘ é =
MuItiLevleI Conv 3x3  Conv 1x1

¢ (7) DeSIgﬂ CN NS features maps Saliency Saliency map

features maps
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Related Theory

Other Layers

* (1) Computer Vision Tasks

* (2) CNNs
e Traditional CNNs

* Deep Learning Layers
* (3) Transfer Learning
* (4) Channel Attention
* (5) Feature Fusion
* (6) Depthwise Convolution

e (7) Design CNNs

Elementwise Layer: Elementwise layer

performs elementwise operations on two or more previous
layers, in which the feature maps must be of the same

number of channels and the same size.

There are three kinds of elementwise operations:

product, add (sum), max.

In our network, we use add operation.
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Related Theory

Other Layers

* (1) Computer Vision Tasks

* (2) CNNs
e Traditional CNNs

* Deep Learning Layers
* (3) Transfer Learning
* (4) Channel Attention
* (5) Feature Fusion
* (6) Depthwise Convolution

e (7) Design CNNs

RelLU Layer: The rectified linear unit (ReLU) (Hinton, 2010)

*  Itis usually chosen as the nonlinearity layer

* It thresholds the non-positive value as zero and keeps the positive

value unchanged

* It can achieve a considerable reduction in training time

Batch Normalization Layer:

° It normalizes layer inputs to a Gaussian distribution with zero-mean

and unit variance.
* Aiming at addressing the problem of internal covariate shift
Softmax Layer: The softmax nonlinearity (Bridle, 1989)

* Itis applied to the output layer in the case of multiclass classification

* It outputs the posterior probabilities over each category

Page 238



Related Theory

» (1) Computer Vision Tasks "Transfer learning is the improvement of learning in
e (2) CNNSs a new task through the transfer of knowledge from
e Traditional CNNs a related task that has already been learned.”

* Deep Learning Layers higher slope higher asymptote

e (3) Transfer Learning

e (4) Channel Attention

------ with transfer

* (5) Feature Fusion _
— Without transfer

performance

higher start

* (6) Depthwise Convolution

* (7) Design CNNs training

Page 239
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Related Theory

» (1) Computer Vision Tasks ® Attention is helpful to focus on what we want
.« (2) CNNs ® We utilize channel attention to select the
e Traditional CNNs important features
* Deep Learning Layers 2 & y«[llmlﬂgﬂw
* (3) Transfer Learning o F, o Fycale ()
e (4) Channel Attention — W' . W
e (5) Feature Fusion high attention
* (6) Depthwise Convolution ‘ Enlc-)\}v_ét-tér—mt_iéh_ng | H
+ (7) Design CNNs She is eating a green apple.

One word “attends” to other words in the same sentence differently.

Page 240

Refers to Squeeze-and-Excitation Networks and BiseNet



Related Theory

» (1) Computer Vision Tasks ® Attention is helpful to focus on what we want
e (2) CNNs ®* We utilize channel attention to select the

e Traditional CNNs important features

* Deep Learning Layers 2 v yﬂgﬂlﬂgﬂw
* (3) Transfer Learning | F, - -
* (4) Channel Attention — W - W
* (5) Feature Fusion

I 2 = B 4= :

* (6) Depthwise Convolution \ — TZ—_, § | é L gﬁ
e (7) Design CNNs I S| | = § | Z -

Refers to Squeeze-and-Excitation Networks and BiseNet e cecccoao--- '



Related Theory

Attention

* (1) Computer Vision Tasks

® Attention is helpful to focus on what we want

. ® We utilize channel attention to select the
(2) CNNs
e Traditional CNNs important features
* Deep Learning Layers ﬂ f(x)
trans .
* (3) Transfer Learning convolution # Leleouy L . attﬁi:;aon
feature maps (x) f
. E ® SOTtAX self-attention
 (4) Channel Attention N e [ faturemaps (o)
* (5) Feature Fusion Ixlcony - ® T L
e (6) Depthwise Convolution
) hx) [

e (7) Design CNNs

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

ﬂ

I1x1conv
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el.ated TheOry Feature Fusion (1)

* (1) Computer Vision Tasks ®*  The features of the two paths are different in level of feature

representation

* (2) CNNs o

Simply sum up low and high features

* Traditional CNNs ° Utilization of low-level features for objects refinement

* Deep Learning Layers

Pooll Pool2 Pool3 Poold Pool5 Predict]  Deconvl Deconv2 Deconv3d  Softmax

5
redi
4 )
>@—>
Predict3

Low Level Feature .
. — 'Conv+ReLu 'Max Pooling ' Prediction ' Deconv ' Softmax
e (7) Design CNNs :

High Level Feature

* (3) Transfer Learning

e (4) Channel Attention

e (5) Feature Fusion

* (6) Depthwise Convolution

Tai, Lei, et al. "PCA-aided fully convolutional networks for semantic segsmentation of multi-channel fMRI." 2017 18th

. . Page 243
International Conference on Advanced Robotics (ICAR). IEEE, 2017.



Rel.ated Th eOry Feature Fusion (2)

* (1) Computer Vision Tasks ®*  The features of the two paths are different in level of feature

representation

* (2)CNNs ®  Fuse spatial path (low level features) and context path (high
* Traditional CNNs level feature) together
* Deep Learning Layers """_' """"""""""""""""""" ;
: s || & 2| | = :
* (3) Transfer Learning l ~ - S = 2 = S = £ :
' ] _ L an
: 8 > > = :
. 1 =) A N :
(4) Channel Attention S N 2
] = + 1
e (5) Feature Fusion B e | mul{—> add H—
| | High Level Feature | & & = 5
* (6) Depthwise Convolution ' | © :
¢ (7) Design CNNs (c) Feature Fusion Module

Yu, C., Wang, J., Peng, C., Gao, C,, Yu, G, & Sang, N. (2018). Bisenet: Bilateral segmentation network for real-time
. : Page 244

semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 325-341).



Rel,atEd Theer Depth-wise Convolution

e (1) Computer Vision Tasks ®* Filters and image have been broken into three different

channels and then convolved separately and stacked thereafter

e (2) CNNs

e Traditional CNNs

* Deep Learning Layers

* (3) Transfer Learning

e (4) Channel Attention

e (5) Feature Fusion

* (6) Depthwise Convolution ::":;:"ﬂ'

e (7) Design CNNs

https.//medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable- Pa ge 245
convolution-37346565d4ec
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RetatEd Theer Depth-wise Convolution

This is the standard discrete convolution:

* (1) Computer Vision Tasks

* (2)CNNs (F*k)(P) = Xs+e=p F(s)k(D)
* Traditional CNNs

* Deep Learning Layers
* (3) Transfer Learning

e (4) Channel Attention

\A
* (5) Feature Fusion D
« (6) Depthwise Convolution
N T S I
* (7) Design CNNs o 8
https.//towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215 Pa g€ 246
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Retated Th eory Dilated Convolution (Atrous Convolution)

o . . . .
e (1) Computer Vision Tasks Multi-scale context aggregation by dilated convolutions

The dilated convolution follows:
e (2) CNNs

B (F x kK)(P) = Xs+1e=p F (8)k(E)
e Traditional CNNs

When [ = 1, the dilated convolution becomes as the standard convolution.

* Deep Learning Layers

1 Dilated Convolution 2 Dilated Convolution 4 Dilated Convolution

* (3) Transfer Learning

e (4) Channel Attention

e (5) Feature Fusion

(a) (b)

« (6) Depthwise Convolution

e (7) Design CNNs

Page 247
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Retated Th eory Dilated Convolution (Atrous Convolution)

o . . . .
e (1) Computer Vision Tasks Multi-scale context aggregation by dilated convolutions

1 Dilated Convolution 2 Dilated Convolution 4 Dilated Convolution

e (2) CNNs

e Traditional CNNs

* Deep Learning Layers

* (3) Transfer Learning @ ®) ©

e (4) Channel Attention

e (5) Feature Fusion
« (6) Depthwise Convolution

e (7) Design CNNs

Page 248
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Retated Th eory Dilated Convolution (Atrous Convolution)

*  (6) Depthwise Convolution ° Multi-scale context aggregation by dilated convolutions

e 3x3 Depthwise separable convolution decomposes a standard convolution into (a) a depthwise
convolution (applying a single filter for each input channel) and (b) a pointwise convolution
(combining the outputs from depthwise convolution across channels). In this work, we explore atrous
separable convolution where atrous convolution is adopted in the depthwise convolution, as shown

in (c) with rate = 2.

/

(a) Depthwise conv. (b) Pointwise conv.  (c) Atrous depthwise conv.

Page 249

https.//towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215



https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Retated Th eory Dilated Convolution (Atrous Convolution)

* (6) Depthwise Convolution vs Pointwise Convolution

Depthwise Convolution

/ 4 \ Pointwise Convolution

1x1 conv
D

- ==)

)
e

L Sl

https.//towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
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Retated Th eory Dilated Convolution (Atrous Convolution)

° Multi-scale context aggregation by dilated convolutions

il

(a) Encoder-decoder pyramid (b) Spatial pyramid pooling

* (1) Computer Vision Tasks

e (2) CNNs

e Traditional CNNs

* Deep Learning Layers

* (3) Transfer Learning

e (4) Channel Attention

e (5) Feature Fusion

—
[ ===
E—
—

« (6) Depthwise Convolution
(c) Image pyramid (d) Parallel pyramid

* (7) Design CNNs Figure 2. Different pyramids for capturing multi-scale features.

Pang, Y.; Li, Y.; Shen, J.; Shao, L. Towards bridging semantic gap to improve semantic segmentation. In Proceedings of the IEEE Page 251
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(a) Semantic Enhancement Module (b) Semantic Enhancement Module with full sampling (¢) Boundary Attention Module

Figure 4. Semantic Modules in the proposed parallel pyramid method for improving feature fusion. We introduce semantic enhancement
modules (a) and (b) to enhance the semantics of shallow features, and propose a boundary attention module (c) to extract complementary
information from very shallow features and enhance the deep features. ‘DA’ represents depthwise atrous convolution. ‘dr;’ represents the
dilation rate. ‘r;’ represents the kernel size of convolutional layer. ‘BA’ represents boundary attention.
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. Figure 5. Atrous convolution with sparse sampling in SeEM and
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