

Dissertation Defense

Semantic Segmentation on Remotely Sensed Images Using Deep Convolutional Encoder-Decoder Neural Network

Teerapong Panboonyuen 6071467821

Ph.D. Candidate (Computer Engineering, Chulalongkorn University)

CHULA ENGINEERING COMPUTER

Many Thanks to Dissertation Defense Committee

- Boonserm Kijsirikul, Ph.D. (Chairman)
- Peerapon Vateekul, Ph.D. (Supervisor)
- Ekapol Chuangsuwanich, Ph.D. (Examiner)
- Thanarat Chalidabhongse, Ph.D. (Examiner)
- Kulsawasd Jitkajornwanich, Ph.D. (Examiner)
- Siam Lawawirojwong, Ph.D. (External Examiner)
- Panu Srestasathiern, Ph.D. (External Examiner)

My Research Paper

← → C •• s	cholar.google.co.th/citations?user=myy0qDgAAAAJ&hl=en				Q	¥ (@	Guest
≡ Google Sch	olar	Panboonyuer	וי	1/18 ^ 🗸	×	Q	SIGN
	Teerapong Panboonyuen Other names ► Senior Research Scientist at MARS, Post-doc at Chula Verified email at chula.ac.th - Homepage AL Human Al Interaction Pattern Recognition Computer Vision	Soneing	Follow	GET Cited by	MY OWN P	ROFILE	
TITLE		CITED BY	YEAR	Citations h-index	All 435 9	Si	ince 2019 417 9
Road segmentation with landscape m T <mark>Panboonyuen</mark> , K Jit Remote Sensing 9 (7)	on of remotely-sensed images using deep convolutional neural networks etrics and conditional random fields kajornwanich, S Lawawirojwong, P Srestasathiern,), 680	137	2017	i10-index	9		9 100
Semantic segmer network with char T <mark>Panboonyuen</mark> , K Jit Remote Sensing 11 (*	ntation on remotely sensed images using an enhanced global convolutional nnel attention and domain specific transfer learning kajornwanich, S Lawawirojwong, P Srestasathiern, 1), 83	108	2019		I		75 50 25
An enhanced dee imagery T <mark>Panboonyuen</mark> , P Va Recent Advances in Iu	ep convolutional encoder-decoder network for road segmentation on aerial ateekul, K Jitkajornwanich, S Lawawirojwong nformation and Communication Technology 2017	48	2018	2017 2018 2019 2	2020 2021 2	022 2023 20	024 0
Transformer-base T <mark>Panboonyuen</mark> , K Jit Remote Sensing 13 (;	ed decoder designs for semantic segmentation on remotely sensed images kajornwanich, S Lawawirojwong, P Srestasathiern, 24), 5100	47	2021	Public access		N	/IEW ALL
Object detection of decoder on thai h T Panboonyuen , S Th Information 13 (1), 5	of road assets using transformer-based YOLOX with feature pyramid ighway panorama nongbai, W Wongweeranimit, P Santitamnont,	20	2021	0 articles not available Based on funding	g mandates		4 articles available

Outline

- Introduction
- Related Theory
- Related Works
- Methodology (Proposed Method)
- Experimental Results
- Objectives and Procedure
- Conclusions
- Publication and Reference

Introduction

- Semantic segmentation of remotely-sensed corpora
 - Aerial (or Very-High Resolution, VHR) images
 - Satellite (or Medium-Resolution, MR) images
- Convolution Neural Network (CNNs)
 - Classification of images has becomes very efficient and smart
 - Can create the pre-trained deep CNNs with fixed parameters are transferred for remote scene classification
 - Overcomes the traditional method (K-means, Neural Nets) on Remote Sensing corpora

alifornia

Introduction

- Semantic segmentation of remotely-sensed corpora
 - Aerial (or Very-High Resolution, VHR) images
 - Satellite (or Medium-Resolution, MR) images
- Convolution Neural Network (CNNs) •
 - Classification of images has becomes very ٠ efficient and smart
 - Can create the pre-trained deep CNNs with fixed ۲ parameters are transferred for remote scene classification
 - Overcomes the traditional method (K-means, Neural Nets) on Remote Sensing corpora

Introduction

- Semantic segmentation of remotely-sensed corpora
 - Aerial (or Very-High Resolution, VHR) images ٠
 - Satellite (or Medium-Resolution, MR) images
- Convolution Neural Network (CNNs)
 - Classification of images has becomes very efficient and smart
 - Can create the pre-trained deep CNNs with fixed parameters are transferred for remote scene classification
 - Overcomes the traditional method (K-means, Neural Nets) on Remote Sensing corpora

Introduction (cont.)

- It has been implemented in many applications in various domains
 - Urban planning, map updates, route optimization, and navigation
 - Allowing us to better understand the domain's images and create important real-world applications
- It is mainly used for the agricultural purpose
 - Crop mapping, forest inventory, land cover
- The most widely used satellite for agriculture is LANDSAT 8
 - It contains operational land imager (OLI) and thermal infrared sensor (TIRS)
 - It covers the landmass, agriculture and remote areas

Introduction (cont.)

- It has been implemented in many applications in various domains
 - Urban planning, map updates, route optimization, and navigation
 - Allowing us to better understand the domain's images and create important real-world applications
- It is mainly used for the agricultural purpose
 - Crop mapping, forest inventory, land cover
- The most widely used satellite for agriculture is LANDSAT 8
 - It contains operational land imager (OLI) and thermal infrared sensor (TIRS)
 - It covers the landmass, agriculture and remote areas

Public corpus (ISPRS Vaihingen Corpus)

(a) image

(b) ground truth

Public corpus (ISPRS Vaihingen Corpus)

Public corpus (ISPRS Vaihingen Corpus)

- There are 33 images of about $2,500 \times 2,000$ pixels at a ground sampling distance (GSD) of about 9 cm in the image data
- We randomly split the 16 images with ground truth available
 - into a training set of 10 images and a validation set of 6 images
- 4 tiles (Image Numbers 5, 7, 23, and 30) were removed from the training set as the testing corpus

Private corpus (GISTDA Nan Province Corpus)

ลำนักงานพัฒนาเทคโนโลยีอวกาศ และภูมิสารสนเทค (องศ์กรมทาง)

Private corpus (GISTDA Nan Province Corpus)

- The dataset is obtained from Landsat-8 satellite consisting of 1,012 satellite images
- Bands 5, 4, and 3 are used
- Capture at Nan, a province in Thailand
- Medium resolution $(16,800 \times 15,800)$
- The 1,012 images were split into 800 training and 112 validation images with publicly available annotation, as well as 100 testing images with annotations withheld

Private corpus (GISTDA ISAN Zone Corpus)

ลำนักงานพัฒนาเทคโนโลยีอวกาศ และภูมิสารสนเทค (องศกรมทชม)

Private corpus (GISTDA ISAN Zone Corpus)

• For the Dissertation, we select LC129048, LC130050 zone as the LC3W corpus

สำนักงานพัฒนาเทคโนโลยีอวกาศ และภูมิสารสนเทค (องศ์กรมทางน)

Private corpus (GISTDA ISAN Zone Corpus)

- For the Dissertation, we select LC129048, LC130050 zone as the LC3W corpus
- Medium resolution (15,376x15,872) pixels
- 764 training
- 112 validating
- 100 testing

สำนักงานพัฒนาเทคโนโลยีอวกาศ และภูมิสารสนเทศ (องศ์กรมทางน)

Statement of Problem (1) Very High Resolution

[10] Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., & Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 78-95.

Problem: False Negative

Color	Class
	Car
	Building
	Tree
	Low Vegetation
	Imp Surfaces
	Clutter

Page 18

Statement of Problem (2) Medium Resolution

[10] Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., & Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 78-95.

Problem: False Negative

Color	Class	
	Agriculture	
	Forest	
	Miscellaneous	
	Urban	
	Water	

Page 19

Statement of Problem (3) Medium Resolution

[10] Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., & Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 78-95.

Problem: **False Negative**

Color	Class
	Corn
	Pineapple
	Para Rubber
	Miscellaneous

Page 20

Statement of Problem (4)

- False Positive Problem
 - High Level (Sharp Boundary Object) such as Building Object, Rubber Tree (Zone)
- False Negative Problem
 - Rare Class (Low-Level Class) such as Water Class
- Motivation
 - This leads to some inconsistent results that suffer from accuracy performance
 - The primary challenge of this remote sensing task is a lack of training data
 - This, in fact, has become a motivation of this work

Outline | Related Theory

- Introduction
- Related Theory
- Related Works
- Methodology (Proposed Method)
- Experimental Results
- Objectives and Procedure
- Conclusions
- Publication and Reference

- (1) Transfer Learning
- (2) Channel Attention
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs

- (1) Transfer Learning
- (2) Channel Attention
- (3) Feature Fusion
- (4) Depthwise Convolution lacksquare
- (5) Design CNNs

"Transfer learning is the improvement of learning in a new task through the transfer of knowledge from a related task that has already been learned."

https://machinelearningmastery.com/transfer-learning-for-deep-learning/

with transfer without transfer

- (1) Transfer Learning
- (2) Channel Attention •
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs

- Attention is helpful to focus on what we want
- We utilize channel attention to select the important features

Refers to Squeeze-and-Excitation Networks and BiseNet

Self Attention

- (1) Transfer Learning
- (2) Channel Attention
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs

- Attention is helpful to focus on what we want
- We utilize channel attention to select the important features

Refers to Squeeze-and-Excitation Networks and BiseNet

Self Attention

it we want ct the

- (1) Transfer Learning
- (2) Channel Attention
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs

- Attention is helpful to focus on what we want
- We utilize channel attention to select the important features

Self Attention

it we want ct the

- (1) Transfer Learning
- (2) Channel Attention •
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs

- The features of the two paths are different in level of feature representation
- Simply sum up low and high features
 - Utilization of low-level features for objects refinement

Tai, Lei, et al. "PCA-aided fully convolutional networks for semantic segmentation of multi-channel fMRI." 2017 18th International Conference on Advanced Robotics (ICAR). IEEE, 2017.

Feature Fusion (1)

- (1) Transfer Learning
- (2) Channel Attention •
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs •

- The features of the two paths are different in level of feature representation
- Fuse spatial path (low level features) and context path (high level feature) together

(c) Feature Fusion Module

Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018). Bisenet: Bilateral segmentation network for real-time semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 325-341).

Feature Fusion (2)

- (1) Transfer Learning
- (2) Channel Attention
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs

Filters and image have been broken into three different channels and then convolved separately and stacked thereafter

https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-

Depth-wise Convolution

- (1) Transfer Learning
- (2) Channel Attention
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs

$$(F * k)(\mathbf{p}) = \sum_{s+t=\mathbf{p}} F(s)k(t)$$

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Point-wise Convolution

Dilated Convolution (Atrous Convolution)

- (1) Transfer Learning
- (2) Channel Attention •
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs

Multi-scale context aggregation by dilated convolutions

The dilated convolution follows:

$$(F *_l k)(\mathbf{p}) = \sum_{\mathbf{s}+l\mathbf{t}=\mathbf{p}} F(\mathbf{s})k(\mathbf{t})$$

When l = 1, the dilated convolution becomes as the standard convolution.

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Dilated Convolution (Atrous Convolution)

- (1) Transfer Learning
- (2) Channel Attention
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs

Multi-scale context aggregation by dilated convolutions

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

-	-	-
-	-	
		1
	1	1

Dilated Convolution (Atrous Convolution)

(4) Depthwise Convolution

- Multi-scale context aggregation by dilated convolutions
- 3×3 Depthwise separable convolution decomposes a standard convolution into
- (a) a depthwise convolution (applying a single filter for each input channel)
- (b) a pointwise convolution (combining the outputs from depthwise convolution across channels).
- In this example, we explore atrous separable convolution where atrous convolution is adopted in the depthwise convolution, as shown in (c) with rate = 2.

- (1) Transfer Learning
- (2) Channel Attention •
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs •

EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

Depth Scaling

- (1) Transfer Learning
- (2) Channel Attention •
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs •

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

Compound Scaling
Related Theory

- (1) Transfer Learning
- (2) Channel Attention
- (3) Feature Fusion
- (4) Depthwise Convolution
- (5) Design CNNs

Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018). Bisenet: Bilateral segmentation network for real-time semantic segmentation. In *Proceedings of the European Conference on Computer Vision (ECCV)* (pp. 325-341).

Compound Scaling

Context Path Style (Compound Scaling)

Outline | Related Works

- Introduction
- Related Theory
- Related Works
- Methodology (Proposed Method)
- Experimental Results
- Objectives and Procedure
- Conclusions
- Publication and Reference

- (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus) \bullet
- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present) lacksquare
 - CamVid Corpus (<u>http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/</u>) ٠

- (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)
- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present) \bullet
 - CamVid Corpus (<u>http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/</u>)

(a) image

(b) ground truth

clutter/background

low vegetation impervious surfaces

tree

building

car

- (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)
 - Fully Convolutional Networks by Long, J. et. al. (CVPR 2015)
 - F1-Score on Test Set is 80.8% •
 - Segnet: A Deep Convolutional Encoder-Decoder Architecture by Badrinarayanan, V. et al. (PAMI, 2017)
 - F1-Score on Test Set is 84.7% •
 - Learning Deconvolution Network by Noh, H. et al. (CVPR 2015)
 - F1-Score on Test Set is 83.5% •
 - Gated Convolutional Neural Network by Wang, H. et al. (Remote Sensing 2017) ٠
 - F1-Score on Test Set is 85.2% •
 - Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing, 2018)
 - F1-Score on Test Set is 85.4% •

- (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)
 - Fully Convolutional Networks by Long, J. et. al. (CVPR 2015)
 - F1-Score on Test Set is 80.8% •
 - Segnet: A Deep Convolutional Encoder-Decoder Architecture by Badrinarayanan, V. et al. (PAMI, 2017) ٠
 - F1-Score on Test Set is 84.7% •
 - Learning Deconvolution Network by Noh, H. et al. (CVPR 2015)
 - F1-Score on Test Set is 83.5% •
 - Gated Convolutional Neural Network by Wang, H. et al. (Remote Sensing 2017) ٠
 - F1-Score on Test Set is 85.2% •
 - Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing, 2018) ۲
 - F1-Score on Test Set is 85.4% •

- Fully Convolutional Networks by Long, J. et. al. (CVPR 2015) ٠
 - F1-Score on Test Set is 80.8% •
- Segnet: A Deep Convolutional Encoder-Decoder Architecture by Badrinarayanan, V. et al. (PAMI, 2017)
 - F1-Score on Test Set is 84.7% •
- Learning Deconvolution Network by Noh, H. et al. (CVPR 2015)
 - F1-Score on Test Set is 83.5% •
- Gated Convolutional Neural Network by Wang, H. et al. (Remote Sensing 2017)
 - F1-Score on Test Set is 85.2% •
- Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing, 2018) ۲
 - F1-Score on Test Set is 85.4% •

- Fully Convolutional Networks by Long, J. et. al. (CVPR 2015) ٠
 - F1-Score on Test Set is 80.8% •
- Segnet: A Deep Convolutional Encoder-Decoder Architecture by Badrinarayanan, V. et al. (PAMI, 2017)
 - F1-Score on Test Set is 84.7% •
- Learning Deconvolution Network by Noh, H. et al. (CVPR 2015) ٠
 - F1-Score on Test Set is 83.5% •
- Gated Convolutional Neural Network by Wang, H. et al. (Remote Sensing 2017)
 - F1-Score on Test Set is 85.2% •
- Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing, 2018) ۲
 - F1-Score on Test Set is 85.4% •

- Fully Convolutional Networks by Long, J. et. al. (CVPR 2015) ٠
 - F1-Score on Test Set is 80.8% •
- Segnet: A Deep Convolutional Encoder-Decoder Architecture by Badrinarayanan, V. et al. (PAMI, 2017)
 - F1-Score on Test Set is 84.7% •
- Learning Deconvolution Network by Noh, H. et al. (CVPR 2015)
 - F1-Score on Test Set is 83.5% •
- Gated Convolutional Neural Network by Wang, H. et al. (Remote Sensing 2017)
 - F1-Score on Test Set is 85.2% •
- Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing, 2018) ۲
 - F1-Score on Test Set is 85.4% •

- Fully Convolutional Networks by Long, J. et. al. (CVPR 2015) ٠
 - F1-Score on Test Set is 80.8% •
- Segnet: A Deep Convolutional Encoder-Decoder Architecture by Badrinarayanan, V. et al. (PAMI, 2017) ٠
 - F1-Score on Test Set is 84.7% •
- Learning Deconvolution Network by Noh, H. et al. (CVPR 2015)
 - F1-Score on Test Set is 83.5% •
- Gated Convolutional Neural Network by Wang, H. et al. (Remote Sensing 2017) ٠
 - F1-Score on Test Set is 85.2% •
- Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing 2018)
 - F1-Score on Test Set is 85.4% ٠

(1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)

- Fully Convolutional Networks by Long, J. et. al. (CVPR 2015)
 - F1-Score on Test Set is 80.8% •
- Segnet: A Deep Convolutional Encoder-Decoder Architecture by Badrinarayanan, V. et al. (PAMI, 2017)
 - F1-Score on Test Set is 84.7% •
- Learning Deconvolution Network by Noh, H. et al. (CVPR 2015)
 - F1-Score on Test Set is 83.5% •
- Gated Convolutional Neural Network by Wang, H. et al. (Remote Sensing 2017) ٠
 - F1-Score on Test Set is 85.2% •
- Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing 2018)
 - F1-Score on Test Set is 85.4% ٠

Winner is Encoder-Decoder (ScasNet-based)

- (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus) \bullet
- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present) \bullet
 - CamVid Corpus (<u>http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/</u>) ٠

Method	Imp surf	Building	Low veg	Tree	Car	
FCN-8s {Long, 2015 #6}	0.871	0.918	0.752	0.861	0.638	
SegNet {Badrinarayanan, 2017 #7}	0.867	0.891	0.763	0.839	0.657	
DeconvNet {Noh, 2015 #8}	0.891	0.932	0.814	0.857	0.684	
GSN {Wang, 2017 #9}	0.892	0.945	0.749	0.875	0.798	
Encoder-Decoder {Liu, 2018 #10}	0.872	0.893	0.841	0.914	0.815	

F1-score	
0.808	
0.847	
0.835	
0.852	
0.854	Winner

Point of view in the previous work

- (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)
 - Fully Convolutional Networks by Long, J. et. al. (CVPR 2015)
 - F1-Score on Test Set is 80.8% •
 - Segnet: A Deep Convolutional Encoder-Decoder Architecture
 - by Badrinarayanan, V. et al. (PAMI, 2017)
 - F1-Score on Test Set is 75.5% •
 - Learning Deconvolution Network by Noh, H. et al. (CVPR 2015)
 - F1-Score on Test Set is 83.5%

Point of view in the previous work

- (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus)
 - Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing) ٠
 - F1-Score on Test Set is 85.4% (Winner) ٠

- (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus) \bullet
- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present) \bullet
 - CamVid Corpus (<u>http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/</u>) ٠

CamVid Corpus The Cambridge-driving Labeled Video Database

Void	Building	Wall	Tree	VegetationMisc
Fence	Sidewalk	ParkingBlock	Column_Pole	TrafficCone
Bridge	SignSymbol	Misc_Text	TrafficLight	Sky
Tunnel	Archway	Road	RoadShoulder	LaneMkgsDriv
LaneMkgsNonDriv	Animal	Pedestrian	Child	CartLuggagePram
Bicyclist	MotorcycleScoote	Car	SUVPickupTruck	Truck_Bus
Train	OtherMoving			

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

32 semantic classes

- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)
 - Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)
 - F1-Score on Test Set is 80.8% •
 - DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017) ۲
 - F1-Score on Test Set is 75.1% •
 - Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
 - F1-Score on Test Set is 86.1% •
 - Encoder-Decoder (DeepLabV3) by Chen, L. C. (ECCV 2018) ٠
 - F1-Score on Test Set is 67.2% •
 - Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)
 - F1-Score on Test Set is 83.1% •

- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)
 - Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)
 - F1-Score on Test Set is 80.8% •
 - DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017) ٠
 - F1-Score on Test Set is 75.1% •
 - Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
 - F1-Score on Test Set is 86.1% •
 - Encoder-Decoder (DeepLabV3) by Chen, L. C. (ECCV 2018) ٠
 - F1-Score on Test Set is 67.2% •
 - Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)
 - F1-Score on Test Set is 83.1% •

- Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)
 - F1-Score on Test Set is 80.8%
- DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017)
 - F1-Score on Test Set is 75.1%
- Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
 - F1-Score on Test Set is 86.1%
- Encoder-Decoder (DeepLabV3) by Chen, L. C. (ECCV 2018)
 - F1-Score on Test Set is 67.2%
- Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)
 - F1-Score on Test Set is 83.1%

- Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)
 - F1-Score on Test Set is 80.8%
- DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017)
 - F1-Score on Test Set is 75.1%
- Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
 - F1-Score on Test Set is 86.1%
- Encoder-Decoder (DeepLabV3) by Chen, L. C. (ECCV 2018)
 - F1-Score on Test Set is 67.2%
- Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)
 - F1-Score on Test Set is 83.1%

- Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)
 - F1-Score on Test Set is 80.8%
- DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017)
 - F1-Score on Test Set is 75.1%
- Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
 - F1-Score on Test Set is 86.1%
- Encoder-Decoder (DeepLabV3) by Chen, L. C. (ECCV 2018)
 - F1-Score on Test Set is 67.2%
- Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)
 - F1-Score on Test Set is 83.1%

- Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)
 - F1-Score on Test Set is 80.8%
- DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017)
 - F1-Score on Test Set is 75.1%
- Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
 - F1-Score on Test Set is 86.1%
- Encoder-Decoder (DeepLabV3) by Chen, L. C. (ECCV 2018)
 - F1-Score on Test Set is 67.2%
- Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)
 - F1-Score on Test Set is 83.1%

(2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)

- Pyramid Scene Parsing Network by Zhao, H. et al. (CVPR 2017)
 - F1-Score on Test Set is 80.8% •
- DenseNet (Tiramisu) by Jégou, S. et al. (CVPR 2017) ۲
 - F1-Score on Test Set is 75.1% •
- Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
 - F1-Score on Test Set is 86.1% •
- Encoder-Decoder (DeepLabV3) by Chen, L. C. (ECCV 2018)
 - F1-Score on Test Set is 67.2% •
- Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)
 - F1-Score on Test Set is 83.1% •

Winner is Global Convolution Network (GCN)

- (1) Deep Learning on Remote Sensing Corpus (ISPRS Vaihingen Corpus) \bullet
- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present) \bullet
 - CamVid Corpus (<u>http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/</u>) ٠

Deep Learning Model	Precision	Recall	F1
PSPNet {Zhao, 2017 #1}	0.74	0.74	
DenseNet (Tiramisu) {Badrinarayanan, 2017 #2}	0.74	0.77	
GCN {Peng, 2018 #3}	0.85	0.87	
DeepLabV3 {Chen, 2018 #4}	0.72	0.63	
BiseNet {Yu, 2018 #5}	0.84	0.82	

Point of view in the previous work

- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)
 - Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)

F1-Score on Test Set is 86.1% (Winner) •

Point of view in the previous work

- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)
 - Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018) ٠
 - F1-Score on Test Set is 86.1% (Winner) ٠

** Valid Receptive Field (VRF)

(A) and fails to hold the entire object if the input resized to a larger scale (B). As a comparison, their Global Convolution Network significantly enlarges the VRF (C).

Point of view in the previous work

- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)
 - Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018)
 - F1-Score on Test Set is 86.1% (Winner) •

Solve: False Negative and False Positive

Point of view in the previous work

- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)
 - Bilateral Network (Bisenet) by Yu, C. (ECCV 2018) ٠
 - F1-Score on Test Set is 83.1% (first runner-up) ٠

⁽a) Network Architecture

Point of view in the previous work

- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)
 - Bilateral Network (Bisenet) by Yu, C. (ECCV 2018) ٠
 - F1-Score on Test Set is 83.1% (first runner-up) •

(c) Feature Fusion Module

(a) Network Architecture

Point of view in the previous work

- (2) Modern Deep Learning on Challenge Corpora (based on CVPR, ECCV since 2017 to present)
 - Bilateral Network (Bisenet) by Yu, C. (ECCV 2018)
 - F1-Score on Test Set is 83.1% (first runner-up) •

(a) Image (b) U-Shape (c) BiSeNet

Problem: False Positive

Recap: Each Techniques from Related Theory and Work

- From Remote Sensing Challenge, Encoder-Decoder ScasNet-based by Liu, Y. et al. (ISPRS Journal of Photogrammetry and Remote Sensing 2018) is the winner.
- From CamVid Challenge, Global Convolutional Network (Large Kernel Matters) by Peng, C (CVPR 2018) is the winner.
- Modern Technique from modern deep learning researches: •
 - Global Convolutional (Large Kernel Matter, Dynamic Kernel Size)
 - Channel Attention
 - Domain Specific Transfer Learning
 - Feature Fusion
 - Depthwise Atrous Convolution

Outline | Methodology (Proposed Method)

- Introduction
- Related Theory
- **Related Works**
- Methodology (Proposed Method)
- Experimental Results
- Objectives and Procedure
- Conclusions
- Publication and Reference

Proposed Method

Stage: Design Deep Learning Architecture

Proposed Method

Attention

Transfer Learning

GCN = Global Conv Block **BR = Boundary Refinement Block**

Proposed Method

Attention

Transfer Learning (TL)

BR = Boundary Refinement Block

GCN = Global Conv Block

GCN = Global Conv Block

GCN = Global Conv Block

GCN = Global Conv Block BR = Boundary Refinement Block

GCN = Global Conv Block BR = Boundary Refinement Block

Attention

(TL)

Proposed Method

P1 Backbone

P2 Attention (A)

P3 Transfer Learning (TL)

P4 Feature Fusion (FF)

GCN = Global Conv Block BR = Boundary Refinement Block

A = Channel Attention Block

TL = Transfer Learning

FF = Feature Fusion Block

DA = Depthwise Atrous

1_____

Outline | Experimental Results

- Introduction
- Related Theory
- Related Works
- Methodology (Proposed Method)
- Experimental Results
- Objectives and Procedure
- Conclusions
- Publication and Reference

Evaluation		Corpus 1 ISPRS Vaihingen	N	Corpus 2 Ian, Thailand		Co Isan			
	Abbreviation		Description			P	recisio		
	А								
	GCN	Global Convolutional Network							
	GCN50	Global Convolutional Network with ResNet50					Recall		
	GCN101	Global							
	GCN152	GCN152Global Convolutional Network with ResNet52TLDomain-Specific Transfer Learning							
	TL						$\frac{2 \times Pr}{P}$		
	FF		Feature Fusion Modu	le		' Pred			
	DA		Depthwise Atrous Convo	lution					
						Accura	$cy = \frac{1}{TI}$		

Abbreviations on our proposed deep learning methods

orpus 3 Thailand

 $on = \frac{TP}{TP + FP}$

 $=\frac{TP}{TP+FN}$

$ecision \times Recall$ cision + Recall

TP + TNP + TN + FP + FN

Performance Metrics

Recap: Each Methods from Proposed

A = Channel Attention Block

TL = Transfer Learning

FF = Feature Fusion Block

DA = Depthwise Atrous

- P2 P4 **P**3 **P1 Transfer Learning** Attention Feature Fusion **Backbone** (FF) (A) (TL)
- **Experiment 1:** How it impacts modern and over-deeper backbone? •
- **Experiment 2:** Chanel Attention
- **Experiment 3:** Deep CNNs with Domain Specific Transfer Learning
- **Experiment 4:** Feature Fusion
- **Experiment 5:** Depthwise Atrous Convolution
- Three data sets: two private corpora from Landsat-8 satellite (Nan and Isan Region) and one public benchmark from the "ISPRS Vaihingen" challenge.

Evaluatio	n	Corpus 1 Nan, Thailan	d	Corpus 2 ISPRS Vaihingen		Corpus 3 san, Thailai	nd
	Method	Pretrained	Backbone	Model	Precision	Recall	F1 Score
	Baseline	_	-	DCED	0.857	0.894	0.874
 Precision 	Proposed		Res50	GCN	0.881	0.872	0.875
• Recall		-	Res101	GCN	0.862	0.897	0.877
• F1-score		-	Res152	GCN	0.892	0.878	0.884
		-	Res152	GCN-A	0.907	0.929	0.917
		TL	Res152	GCN-A	0.921	0.918	0.918
		TL	Res152	GCN-A-FF	0.930	0.924	0.927
		TL	Res152	GCN-A-FF-DA	0.934	0.939	0.936
	Result: Our proposed method yields a higher F1 Score from baseline method at 6.2%						Page 10

Evaluation		Corpus 1 Nan, Thailand ISPRS Vaihingen		2 ningen	Corpus 3 Isan, Thailand		
	Method	Model	Agri	Forest	Misc	Urban	Water
	Baseline	DCED	0.982	0.962	0.763	0.854	0.725
	Proposed	GCN50	0.967	0.948	0.817	0.881	0.792
		GCN101	0.976	0.929	0.685	0.929	0.785
 Each class 		GCN152	0.976	0.950	0.823	0.913	0.797
		GCN152-A	0.984	0.944	0.882	0.899	0.822
		GCN152-TL-A	0.974	0.953	0.864	0.934	0.828
		GCN152-TL-A-FF	0.986	0.982	0.918	0.956	0.844
		GCN152-TL-A-FF-DA	0.989	0.957	0.934	0.949	0.868
							Page 101

Evaluatio	n	Corpus 1 Nan, Thailand		Experiment 1: How it impacts modern and over-		
	Method	Pretrained	Backbone	e Model	Precision	
	Baseline	-	-	DCED	0.857	
 Precision 	Proposed	<u> </u>	Res50	GCN	0.881	
• Recall		-	Res101	GCN	0.862	
• F1-score		-	Res152	GCN	0.892	

- GCN50 overcame DECD ~ 0.116 % F1
- GCN152 overcame DECD ~ 1.043 % F1

deeper backbone?

Evaluation	Corpus 1 Nan, Thailand	Expe How it impacts modern	riment 1: and over-c
Input Image	Target Image	Baseline Method [10]	
<image/>			

deeper backbone?

GCN50

- GCN152-A overcame DECD ~ 4.332 % F1
- GCN152-A overcame GCN152 ~ 3.288 % F1

332 % F1 3.288 % F1

Page 106

Page 108
Evaluation		Corpus 1 Nan, Thailand		Experiment 3: Deep CNNs with Domain Specific		
	Metho	od Pretrained	Backbone	e Model	Precision	
	Baseli	ne -	-	DCED	0.857	
 Precision 	Propos	sed 🧲 -	Res152	GCN-A	0.907	
• Recall		TL	Res152	GCN-A	0.921	
• F1-score	• G(CN152-A	-TL ov	ercame DEC	;D ~ 4.4	

GCN152-A-TL overcame GCN152-A ~ 0.114 % F1

Transfer Learning

46 % F1 ~ 0.114 % F1

Evaluation	Corpus 1 Nan, Thailand	Exper Deep CNNs with Domain	iment 3: 1 Specific
Target Image	Baseline Method [10	GCN152-A	

Transfer Learning

GCN152-A-TL

- GCN152-A-TL-FF overcame DECD ~ 5.288 % F1
- GCN152-A-TL-FF overcame GCN152-A-TL ~ 0.843 % F1

- GCN152-A-TL-FF-DA overcame DECD ~ 6.221 % F1
- GCN152-A-TL-FF-DA overcame GCN152-A-TL-FF ~ 0.933 % F1

Evaluation	Corpus 1 Nan, Thailand	Exper Depthwise At	iment 5: rous Conv
Target Image	Baseline Method [10	GCN152-A-TL-FF	GCN
			~
			2

volution

N152-A-TL-FF-DA

Evaluation		tion Corpus Nan, Tha	s 1 ailand		Summary
	Method	Model	F1 Score	Increase	
	Baseline	DCED	0.874		
	P1	Enhanced GCN + Deeper Head Network	0.884	1.043 %	
į	P2	+ Attention	0.917	3.288 %	The most ir
	P3	+ Transfer Learning	0.918	0.114 %	Chanr
	P4	+ Feature Fusion	0.927	0.843 %	
	P5	+ Depthwise Atrous Convolution	0.936	0.933%	

nel Attention

mpactful method:

Evaluatio	n	Corpus 1 Nan, Thailan	ıd	Corpus 2 ISPRS Vaihingen		Corpus 3 san, Thailar	nd
	Method	Pretrained	Backbone	Model	Precision	Recall	F1 Score
	Baseline		-	DCED	0.867	0.849	0.854
 Precision 	Proposed		Res50	GCN	0.872	0.852	0.858
• Recall		-	Res101	GCN	0.850	0.854	0.866
• F1-score		-	Res152	GCN	0.873	0.864	0.868
		-	Res152	GCN-A	0.875	0.869	0.874
		TL	Res152	GCN-A	0.897	0.877	0.881
		TL	Res152	GCN-A-FF	0.896	0.904	0.905
		TL	Res152	GCN-A-FF-DA	0.923	0.900	0.911
	Result: Our prop	osed metho	d yields a hig	her F1 Score from bas	eline metho	d at 5.7%	Page 120

Evaluation		Corpus 1 Nan, Thailand	Corpus ISPRS Vair	2 ningen	(Isa	Corpus 3 n, Thailand	
	Method	Model	Imps	Building	Low veg	Tree	Car
	Baseline	DCED	0.872	0.893	0.841	0.914	0.815
	Proposed	GCN50	0.876	0.873	0.857	0.953	0.803
	lass	GCN101	0.941	0.913	0.742	0.904	0.699
Each class		GCN152	0.810	0.963	0.895	0.912	0.806
		GCN152-A	0.886	0.928	0.811	0.895	0.820
		GCN152-TL-A	0.871	0.916	0.890	0.918	0.874
		GCN152-TL-A-FF	0.928	0.976	0.926	0.968	0.898
		GCN152-TL-A-FF-DA	0.907	0.979	0.927	0.972	0.910
		`					Page 121

Evaluation		Corpus 2 ISPRS Vaihingen		Experiment 1: How it impacts modern and over-o		
	Metho	d Pretrained	Backbone	Model	Precision	
	Baselin	e -	-	DCED	0.867	
 Precision 	Propose	ed 🖊 -	Res50	GCN	0.872	
• Recall		-	Res101	GCN	0.850	
• F1-score		-	Res152	GCN	0.873	

- GCN50 overcame DECD ~ 0.386 % F1
- GCN152 overcame DECD ~ 1.366 % F1

deeper backbone?

Evaluation		Corpus 2 ISPRS Vaihing	gen	C	Experiment 2: Chanel Attentic	: on
	Method	Pretrained	Backbone	Model	Precision	
	Baseline	-	-	DCED	0.867	
 Precision 	Proposed	<u> </u>	Res152	GCN	0.873	
• Recall			Res152	GCN-A	0.875	
• F1-score						

- GCN152-A overcame DECD ~ 1.916 % F1
- GCN152-A overcame GCN152 ~ 0.55 % F1

RecallF1 Score0.8490.8540.8640.8680.8690.874

916 % F1 0.55 % F1

Evaluation		Corpus 2 ISPRS Vaihingen		Experiment 3: Deep CNNs with Domain Specific		
	Method	Pretrained	Backbone	e Model	Precision	
	Baseline	e –	-	DCED	0.867	
 Precision 	Propose	d 🤇 👘 –	Res152	GCN-A	0.875	
• Recall		TL	Res152	GCN-A	0.897	
• F1-score	• GC • GC	N152-A- N152-A-	TL ov	ercame DEC ercame GCN	D ~ 2.64 152-A ~	

Transfer Learning

42 % F1 ~ 0.726 % F1

- GCN152-A-TL-FF overcame DECD ~ 5.097 % F1
- GCN152-A-TL-FF overcame GCN152-A-TL ~ 2.455 % F1

- GCN152-A-TL-FF-DA overcame DECD ~ 5.67 % F1
- GCN152-A-TL-FF-DA overcame GCN152-A-TL-FF ~ 0.573 % F1

	Evalua	tion Corpus ISPRS Vai	s 2 hingen		Summary
	Method	Model	F1 Score	Increase	
	Baseline	DCED	0.854		
	P1	Enhanced GCN + Deeper Head Network	0.868	1.366 %	
į	P2	+ Attention	0.874	0.550 %	The most in
	P3	+ Transfer Learning	0.881	0.726 %	Feat
	P4	+ Feature Fusion	0.905	2.455 %	
	Р5	+ Depthwise Atrous Convolution	0.911	0.573 %	

impactful method: ture Fusion

Evaluatio	n	Corpus 1 Nan, Thailan	nd	Corpus 2 ISPRS Vaihingen		Corpus 3 san, Thailand	Le la
	Method	Pretrained	Backbone	Model	Precision	Recall	F1 Score
	Baseline		-	DCED	0.861	0.782	0.810
 Precision 	Proposed		Res50	GCN	0.873	0.872	0.872
• Recall		-	Res101	GCN	0.865	0.884	0.874
• F1-score		-	Res152	GCN	0.860	0.898	0.876
		-	Res152	GCN-A	0.865	0.891	0.877
		TL	Res152	GCN-A	0.890	0.923	0.899
		TL	Res152	GCN-A-FF	0.919	0.934	0.929
		TL	Res152	GCN-A-FF-DA	0.945	0.938	0.947
	Result: Our prop	posed metho	od yields a hig	her F1 Score from bas	seline metho	d at 13.7%	Page 14

Evaluation		n (Na	Corpus 1 n, Thailand	Cor ISPRS \	pus 2 /aihingen		sa
		Method	Model		Corn	Pineapple	
		Baseline	DCED		0.905	0.815	
		Proposed	GCN50		0.933	0.778	
			GCN101		0.837	0.815	
	Each class		GCN152		0.910	0.721	
			GCN152-A		0.858	0.768	
			GCN152-TL-A	A	0.919	0.899	
			GCN152-TL-A-	FF	0.952	0.925	
			GCN152-TL-A-FF	-DA	0.969	0.948	

Corpus 3 an, Thailand

Evaluatior		Corpus 3 Isan, Thailar	nd	Experiment 1: How it impacts modern and over-o	
	Method	Pretrained	Backbone	e Model	Precision
	Baseline	-	-	DCED	0.861
 Precision 	Proposed		Res50	GCN	0.873
Recall		-	Res101	GCN	0.865
• F1-score		-	Res152	GCN	0.860

- GCN50 overcame DECD ~ 6.145 % F1
- GCN152 overcame DECD ~ 6.601 % F1

deeper backbone?

Evaluation	Corpus 3 Isan, Thailand	Exper How it impacts modern a	riment 1: and over-o
Input Image	Target Image	Baseline Method [10]	
<image/>			

deeper backbone?

GCN50

GCN152-A overcame GCN152 ~ 0.081 % F1

1 % F1 081 % F1

Evaluation Corpus 3 Isan, Thailand Deep CNNs with					Experiment 3 Iomain Specif	: ic Transfer	Learning
	Method	Pretrained	Backbone	Model	Precision	Recall	F1 Score
	Baseline	-	-	DCED	0.861	0.782	0.810
 Precision 	Proposed		Res152	GCN-A	0.865	0.891	0.877
• Recall		TL	Res152	GCN-A	0.890	0.923	0.899
• F1-score							
•	• GCN152-A-TL overcame DECD ~ 8.875% F1 • GCN152 A TL overcame GCN152 A ~ 2104% E1						

Transfer Learning

75 % F1

- GCN152-A-TL-FF overcame DECD ~ 11.829 % F1
- GCN152-A-TL-FF overcame GCN152-A-TL ~ 2.954 % F1

- GCN152-A-TL-FF-DA overcame DECD ~ 13.701 % F1
- GCN152-A-TL-FF-DA overcame GCN152-A-TL-FF ~ 1.872 % F1

	Evalua	tion Corpus Isan, Tha	s 3 <mark>iland</mark>		Summary
	Method	Model	F1 Score	Increase	
	Baseline	DCED	0.810		
	P1	Enhanced GCN + Deeper Head Network	0.876	6.601 %	The most ir
ļ	P2	+ Attention	0.877	0.081 %	Feat
	P3	+ Transfer Learning	0.899	2.194 %	And Tra
1	P4	+ Feature Fusion	0.929	2.954 %	(from
	P5	+ Depthwise Atrous Convolution	0.947	1.872 %	

ture Fusion ansfer Learning Nan Corpus)

mpactful method:

Recap: The Results (Summary)

GCN = Global Conv Block	P1	P2 Attention	P3 Transfer Learning	P4 Eesture Eusion	Depthy		
A = Channel Attention Block	Backbone	(A)	(TL)	(FF)	Deptitiw (
TL = Transfer Learning	Corpus 1: Nan Province (Medium Resolution Corpus)						
FF = Feature Fusion Block	 GCN152-A-TL-FF-DA overcame DECD ~ 6.221 % F1 						
DA = Depthwise Atrous	 The most impactful method: Channel Attention 						

- **Corpus 2:** ISPRS Vaihingen (Very-High Resolution Corpus)
 - GCN152-A-TL-FF-DA overcame DECD ~ 5.67 % F1
 - The most impactful method: Feature Fusion
- **Corpus 3: Isan Region** (Medium Resolution Corpus)
 - GCN152-A-TL-FF-DA overcame DECD ~ 13.701 % F1
 - The most impactful method: Feature Fusion and Transfer Learning from Nan

Outline | Objective and Procedure

- Introduction
- Related Theory
- Related Works
- Methodology (Proposed Method)
- Experimental Results
- Objectives and Procedure
- Conclusions
- Publication and Reference

Objective of research

The objectives of this research are as follows:

- To propose a new deep learning architecture to segment multi-objects from aerial and satellite 1. images (remote sensing corpora)
- To explore the effectiveness of proposing new deep learning techniques for semantic 2. segmentation particularly on remote sensing corpora

Scope of research

- Evaluate the proposed new deep learning on ISPRS Vaihingen corpus (a city district of Stuttgart, 1. Germany) and GISTDA corpora (GISTDA Nan province and Isan zone corpora) with Encoder-Decoder baseline model
 - Nan province corpora have five classes: agriculture, forest, miscellaneous, urban, and water
 - Isan zone corpora have three classes: corn, pineapple, and rubber tree
- Evaluate the proposed deep learning on reliable measurements such as Precision, Recall, and F1-2. score

Procedure

Procedure

Research Planning	S1/2017	S2/2017	S1/2018	S2/2018	S1/2019	S2/2019
1. Research modern deep learning techniques						
2. Research deep learning on remote sensing images						
3. Literature review						
4. Request and collect data sets from ISPRS corpus and private corpus (GISTDA)						
5. Design and implement the proposed and baseline deep learning.						
6. Conclude and prepare for 1 st ISI journal						
7. Write and thesis proposal examination						
8. Evaluate and improve my new deep learning architecture						
9. Conclude and prepare for 2 nd ISI journal						
10. Write and defend the dissertation						

Outline | Conclusions

- Introduction
- Related Theory
- Related Works
- Methodology (Proposed Method)
- Experimental Results
- Objectives and Procedure
- Conclusions
- Publication and Reference

Conclusions

Title: Semantic Segmentation on Remotely Sensed Images Using Deep Convolutional Encoder-Decoder Neural Network

- What: Semantic Segmentation on Remotely Sensed Corpora
- Why: The previous methods suffer from accuracy performance
- How: Deep Convolutional Encoder-Decoder Neural Network
- Proposed Methods (What's New):
 - (1) Varying Backbones (2) Channel Attention (3) Domain-specific Transfer Learning (4) Feature Fusion (5) Depthwise Atrous Conv
- Result:
 - The results demonstrate that the "GCN152-TL-A-FF-DA" model significantly exceeds all baselines. It is the victor in all data sets ۲ and exceeds more than 90% of F1: 0.9114, 0.9362, and 0.9111 of the Landsat-8w3c, Landsat-8w5c, and ISPRS Vaihingen.
 - Moreover, it reaches an accuracy surpassing 90% in almost all classes.
- Future Plan:
 - Efficient Uncertainty Estimation for Semantic Segmentation (Aleatoric and Epistemic) | Explainable AI ۲

Efficient Uncertainty Estimation for Semantic Segmentation (Aleatoric and Epistemic)

Future Plan: Huang, Po-Yu, et al. "Efficient uncertainty estimation for semantic segmentation in videos." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

What kind of uncertainty can we model?

Aleatoric uncertainty is sensing uncertainty

Efficient Uncertainty Estimation for Semantic Segmentation (Aleatoric and Epistemic)

Future Plan: Huang, Po-Yu, et al. "Efficient uncertainty estimation for semantic segmentation in videos." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Dropout sampling can be interpreted as **sampling from a distribution over models**.

Alex Kendall, Vijay Badrinarayanan and Roberto Cipolla Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding. arXiv preprint arXiv:1511.02680, 2015.

Efficient Uncertainty Estimation for Semantic Segmentation (Aleatoric and Epistemic)

Future Plan: Huang, Po-Yu, et al. "Efficient uncertainty estimation for semantic segmentation in videos." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Modeling Aleatoric Uncertainty with Probabilistic Deep Lea						
	Deep Learning	Probabilistic Deep Learnin				
Model	$[\hat{y}] = f(x)$	$[\hat{y},\hat{\sigma}^2]=f(x)$				
Regression	$Loss = \ y - \hat{y}\ ^2$	$Loss = \frac{\ y - \hat{y}\ ^2}{2\hat{\sigma}^2} + \log\hat{\sigma}^2$				
Classification	$Loss = SoftmaxCrossEntropy(\hat{y}_t)$	$\hat{y}_{t} = \hat{y} + \epsilon_{t} \qquad \epsilon_{t} \sim N(0, \hat{\sigma}^{2})$ $\frac{1}{2} \sum_{t=1}^{n} \epsilon_{t} \qquad \epsilon_{t} \sim N(0, \hat{\sigma}^{2})$				
		$Loss = \overline{T} \sum_{t} SoftmaxCrossEntropy$				

Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? arXiv preprint 1703.04977, 2017.

rning		
ng		
2		
ν(ŷ _t)		
	Page	168

Outline | Conclusions

- Introduction
- Related Theory
- Related Works
- Methodology (Proposed Method)
- Experimental Results
- Objectives and Procedure
- Conclusions
- Publication and Reference

1st Publication (Q1-Tier1, ISI Journal, 2019)

Title: Semantic Segmentation on Remotely Sensed Images Using an Enhanced Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning, 2019

Panboonyuen, T.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P.; Vateekul, P. Semantic Segmentation on Remotely Sensed Images Using an Enhanced • Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning. Remote Sens. 2019, 11, 83.

🔹 Safari	File Edit View History Book	marks Window Help		0 🗏 🎅 100	% 🗱 🗛 ABC Sun 20:58 Kao Q		
••• <		=	@ mdpi.com	0	٥	0 +	Journals / Remote Sensing / Volume 11 /
	MDPI Journals A-Z Information &	Guidelines Author Services Initiatives Ab	out Journal Remote Sensing v		Login Register Submit	< 0	
	A remore sensing	Author / Affiliation	Article Type all T	Advanced Search	4.118		- A
•	remate a	Semantic Segmentatio	on on Remotely Sensed lobal Convolutional Net	Images work with	Submit to Remote Sensing	•	remote sensing
	(the second	Channel Attention and Teerapong Panboonyuen ^{1,*} © , Kulse Panu Srestasathiern ³ and Peerapon Va	I Domain Specific Trans awasd Jitkajornwanich ² , Siam Lawawirojn ateekul ^{1,*}	fer Learning Nong ³ ,	Edit a Special Issue		
	Identification of Dust Sources in	 Chulalongkorn University Big Data Analy Faculty of Engineering, Chulalongkorn U Data Science and Computational Intellig of Science, King Mongkul's Institute of T 	ytics and IoT Center (CUBIC), Department of Jniversity, Phayathai Rd, Pathumwan, Bangk gence (DSCI) Laboratory, Department of Con Technology Ladkrabano, Chalongkrung Rd. L	Computer Engineering, iok 10330, Thailand nputer Science, Faculty adkrabang, Bangkok			
	a Soharan Dust Hot Spot and Their Implementation in a Dust-Emission Model News 13 News13 Amars (200	10520. Thailand ³ Geo-Informatics and Space Technology Complex, Chaeng Wattana Rd, Lak Si, B Authors to whom correspondence shoul	Development Agency (Public Organization), Bangkok 10210, Thailand Id be addressed.	120, The Government	Bringing all the benefits of open access to		 https://www.mdpi.co
	MDP1 nu an ett	Remote Sens. 2019, 11(1), 83; https://doi.	.org/10.3390/rs11010083		scholarly books.		
	Views Downloads 1212 860	Received: 5 December 2018 / Revised: 25 2019 (This article belongs to the Special Issue C	5 December 2018 / Accepted: 1 January 2019 Convolutional Neural Networks Applications i	9 / Published: 4 January	Find professional support for your book project .		Remote Sens. 2019 , 11(1), 83; <u>http</u>
	Citations 2	Full-Text PDF [17974 KB, upload	ded 4 January 2019) 🖾 Figures D Revi	ew Reports			
	Article Versions Abstract Full-Text PDF 117974 KB1	Abstract In the remote sensing domain, it is crucial building, forest, etc., on rester images. A c	I to complete semantic segmentation on the i	raster images, e.g., river,			
	Full-Text PDF With Cover Full-Text HTMI	the art semantic segmentation method for the network is not designed for remetable	remotely sensed images. However, the accur	racy is still limited, since		2	

Received: 5 December 2018 / Revised: 25 December 2018 / Accepted: 1 January 2019 / Published: 4 January 2019

m/2072-4292/11/1/83

s://doi.org/10.3390/rs11010083

2nd Publication (Q1-Tier1, ISI Journal, 2020)

Title: Semantic Labeling in Remote Sensing Corpora Using Feature Fusion-Based Enhanced Global Convolutional Network with High-Resolution Representations and Depthwise Atrous Convolution, 2020

Panboonyuen, T.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P.; Vateekul, P. Semantic Labeling in Remote Sensing Corpora Using Feature Fusion-Based • Enhanced Global Convolutional Network with High-Resolution Representations and Depthwise Atrous Convolution. Remote Sens. 2020, 12, 1233.

iafari File Edit View History Bookman	ks Window Help 🗣 😁 🌒 👰 🤀 🕙 🖇 🛜 📢 81% 🗐 🔯 ABC Fri 13:13 Kao Q 🧔 💳	
	Journals Information Author Services Initiatives About Sign In / Sign Up Submit	Journals / Remote Sensing / Volume 12
Search for Articles:	/ Keyword Author / Affiliation Remote Sensing T All Article Types T Search Advanced	
Journals / Remote Sensing / Volume 12	/ issue 8 / 10.3390/rs12081233	st.
* remote sensing	< ,	remote sensing
Submit to this Journal	Open Access Article Semantic Labeling in Remote Sensing Corpora Using	
Review for this Journal	Feature Fusion-Based Enhanced Global Convolutional	
Edit a Special Issue	Network with High-Resolution Representations and Depthwise Atrous Convolution	
Article Menu	by (1) Teerapong Panboonyuen 1 🗠 🔍 (1) Kulsawasd Jitkajornwanich 2 🗠 🔍 (1) Siam Lawawirojwong 3 🗠 💿	
Article Overview	Chulakongkom University Bata Analysis and IoT Centre (CUBIC), Department of Computer Engineering, Faculty of Exercise Chulakongkom University Department Bd. Pathumyne, Bacetok 10330, Thailand	<u>https://www.mdpi.cc</u>
 Abstract Open Access and Permissions 	² Data Science and Computational Intelligence (DSCI) Laboratory, Department of Computer Science, Faculty of Science, King Necessity prediction of Technology Lethogana Characterization and Academic Science and Acade	
Share and Cite	³ Geo-Informatics and Space Technology Development Agency (Public Organization), 120, The Government Complex, Chaeng Utility of the state of th	
 Related Articles 	* Author to whom correspondence should be addressed.	
 Order Article Reprints 	Remote Sens 2020, 12(8) 1233: https://doi.org/10.3390/rs12081233	Romoto Sons 2020 12(8) 1233. h
Article Versions	Received: 5 March 2020 / Revised: 1 April 2020 / Accepted: 9 April 2020 / Published: 12 April 2020	nennole Jens. 2020, 12(0), 1233, 11
Export Article	(This article belongs to the Special Issue Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images)	
Related Info Links	View Full-Text Download PDF Browse Figures Review Reports Cite This Paper	
More by Authors Links		

Received: 5 December 2018 / Revised: 25 December 2018 / Accepted: 1 January 2019 / Published: 4 January 2019

<u>m/2072-4292/12/8/1233</u>

ttps://doi.org/10.3390/rs12081233

Page 17:

My Google Scholar (My h-index: 9, Citations: 435)

→ C \cdots sc	cholar.google.co.th/citations?user=myy0qDgAAAAJ&hl=en				٩	⊻ (@	Guest
≡ Google Sch	olar	Panboonyuer	h	1/18 ^ ~	×	Q	SIGN
	Teerapong Panboonyuen Other names ▶ Senior Research Scientist at MARS, Post-doc at Chula Verified email at chula.ac.th - Homepage AI Human-AI Interaction Pattern Recognition Computer Vision	Sensing	Follow	GET Cited by	MY OWN	PROFILE	ince 2019
TITLE		CITED BY	YEAR	Citations h-index	435 9		417 9
Road segmentation with landscape me T Panboonyuen, K Jitk Remote Sensing 9 (7),	on of remotely-sensed images using deep convolutional neural networks etrics and conditional random fields ajornwanich, S Lawawirojwong, P Srestasathiern, , 680	137	2017	i10-index	9		9 — 100
Semantic segmen network with chan T Panboonyuen, K Jitk Remote Sensing 11 (1	tation on remotely sensed images using an enhanced global convolutional nel attention and domain specific transfer learning ajornwanich, S Lawawirojwong, P Srestasathiern,), 83	108	2019		I		75 50 25
An enhanced deep imagery T Panboonyuen, P Vat Recent Advances in In	eekul, K Jitkajornwanich, S Lawawirojwong formation and Communication Technology 2017	48	2018	2017 2018 2019 2	2020 2021 2	2022 2023 20	₀₂₄ 0
Transformer-based T Panboonyuen, K Jitk Remote Sensing 13 (2	d decoder designs for semantic segmentation on remotely sensed images ajornwanich, S Lawawirojwong, P Srestasathiern, (4), 5100	47	2021	Public access		٨	/IEW ALL
Object detection o decoder on thai hi T Panboonyuen, S Tho Information 13 (1), 5	f road assets using transformer-based YOLOX with feature pyramid ghway panorama ongbai, W Wongweeranimit, P Santitamnont,	20	2021	0 articles not available Based on funding	g mandates	ŝ	4 articles available

My ResearchGate (My RG-Score: 9, Citations: 416)

Teerapong Panboonyuen

Chulalongkorn University · Department of Computer Engineering Ph.D. in Computer Engineering (Artificial Intelligence), Chulalongkorn University Al/ML Senior Team Lead, Postdoctoral Researcher

Publications (24) About

Network

About			Current institution
24 Publications	8,583 Reads (j)	416 Citations	Chulalongkorn University Department of Computer Engine Current position Research Scientist
Introduction			
Greetings, my name is Kac	o, also known as ธีรพงศ์ ปานบุญยืน i	n Thai. <u>https://kaopanboonyuen.github.io/</u> .	Current journal roles
Neural Networks and Artig	ote Sensing Machine Learning	Pattern Recognition	Peer Reviewer Pattern Recognition
		<u></u>	PLOS ONE
Additional affiliations			Computers & Geosciences
			+10 more journals

My Web of Science ID (My H-INDEX: 6, Citations: 245)

00	Clarivate			English ~	III Products
We	eb of Science"			Sign In 🗸	Register
		You are accessing a free view of the Web of Science	Learn More		
I NU	Author ProfileAuthor Profile			a St	Submit a correction
	Published name Published Organizations Subject Categories	 Teerapong Panboonyuen (Panboonyuen, Teerapong) Chulalongkorn University Web of Science ResearcherID: AAO-4985-2020 Panboonyuen, Teerapong MARS Motor Al Recognit Solut, Chulalongkorn University, Thammasat University Computer Science; Environmental Sciences & Ecology; Imaging Science & Photog 	graphic Technology; Remote Metr	ics le summary Total documents Publications indexed in Web of Web of Science Core Collection Preprint Dissertations or Theses Non-indexed publications Verified peer reviews Verified ditor records of Science Core Collection	Open dashboard Science publications
	Other Identifiers	Sensing; Geology https://orcid.org/0000-0001-8464-4476	6 H-Inde 245	ex Publica	tions
	Documents Viewing up to 10	Peer Review	Sum o 1 Sum o Patent	f Times Cited Citing A 1 of Times Cited by Citing F ts	Articles Patents

Outline | Publication and Reference

- Introduction
- Related Theory
- Related Works
- Methodology (Proposed Method)
- Experimental Results
- Objectives and Procedure
- Conclusions
- Publication and **Reference**

Reference (based-modern deep learning)

- [1] Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the IEEE conference on computer ٠ vision and pattern recognition (pp. 2881-2890).
- [2] Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., & Bengio, Y. (2017). The one hundred layers tiramisu: Fully convolutional densenets for • semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 11-19).
- [3] Peng, C., Zhang, X., Yu, G., Luo, G., & Sun, J. (2018). Large Kernel Matters--Improve Semantic Segmentation by Global Convolutional • Network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4353-4361).
- [4] Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic ٠ image segmentation. In Proceedings of the European conference on computer vision (ECCV) (pp. 801-818).
- [5] Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018). Bisenet: Bilateral segmentation network for real-time semantic segmentation. ٠ In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 325-341).

Reference (based-deep learning on Remote Sensing)

- [6] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE ٠ conference on computer vision and pattern recognition (pp. 3431-3440).
- [7] Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image • segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495.
- [8] Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international • conference on computer vision (pp. 1520-1528).
- [9] Wang, H., Wang, Y., Zhang, Q., Xiang, S., & Pan, C. (2017). Gated convolutional neural network for semantic segmentation in high-• resolution images. Remote Sensing, 9(5), 446.
- [10] Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., & Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded ٠ convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 78-95.
- etc. •

Teerapong Panboonyuen (Kao) ธีรพงศ์ ปานบุญยืน (เก้า)

Appendix

1st Publication (Q1-Tier1, ISI Journal, 2019)

Title: Semantic Segmentation on Remotely Sensed Images Using an Enhanced Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning, 2019

Panboonyuen, T.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P.; Vateekul, P. Semantic Segmentation on Remotely Sensed Images Using an Enhanced • Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning. Remote Sens. 2019, 11, 83.

🔹 Safari	File Edit View History Book	marks Window Help		0 🗏 🎅 100	% 🗱 🗛 ABC Sun 20:58 Kao Q		
••• <		=	@ mdpi.com	0	٥	0 +	Journals / Remote Sensing / Volume 11 /
	MDPI Journals A-Z Information &	Guidelines Author Services Initiatives Ab	out Journal Remote Sensing v		Login Register Submit	< 0	
	A remore sensing	Author / Affiliation	Article Type all T	Advanced Search	4.118		- A
•	remate a	Semantic Segmentatio	on on Remotely Sensed lobal Convolutional Net	Images work with	Submit to Remote Sensing	•	remote sensing
	(the second	Channel Attention and Teerapong Panboonyuen ^{1,*} © , Kulse Panu Srestasathiern ³ and Peerapon Va	I Domain Specific Trans awasd Jitkajornwanich ² , Siam Lawawirojn ateekul ^{1,*}	fer Learning Nong ³ ,	Edit a Special Issue		
	Identification of Dust Sources in	 Chulalongkorn University Big Data Analy Faculty of Engineering, Chulalongkorn U Data Science and Computational Intellig of Science, King Mongkul's Institute of T 	ytics and IoT Center (CUBIC), Department of Jniversity, Phayathai Rd, Pathumwan, Bangk gence (DSCI) Laboratory, Department of Con Technology Ladkrabano, Chalongkrung Rd. L	Computer Engineering, iok 10330, Thailand nputer Science, Faculty adkrabang, Bangkok			
	a Soharan Dust Hot Spot and Their Implementation in a Dust-Emission Model News 13 News13 Amars (200	10520. Thailand ³ Geo-Informatics and Space Technology Complex, Chaeng Wattana Rd, Lak Si, B Authors to whom correspondence shoul	Development Agency (Public Organization), Bangkok 10210, Thailand Id be addressed.	120, The Government	Bringing all the benefits of open access to		 https://www.mdpi.co
	MDP1 nu an ett	Remote Sens. 2019, 11(1), 83; https://doi.	.org/10.3390/rs11010083		scholarly books.		
	Views Downloads 1212 860	Received: 5 December 2018 / Revised: 25 2019 (This article belongs to the Special Issue C	5 December 2018 / Accepted: 1 January 2019 Convolutional Neural Networks Applications i	3 / Published: 4 January	Find professional support for your book project .		Remote Sens. 2019 , 11(1), 83; <u>http</u>
	Citations 2	Full-Text PDF [17974 KB, upload	ded 4 January 2019) 🔀 Figures D Revi	ew Reports			
	Article Versions Abstract Full-Text PDF 117974 KB1	Abstract In the remote sensing domain, it is crucial building, forest, etc., on rester images. A c	I to complete semantic segmentation on the i deep convolutional encoder-decoder (DCED	raster images, e.g., river,			
	Full-Text PDF With Cover Full-Text HTMI	the art semantic segmentation method for the network is not designed for remetable	remotely sensed images. However, the accur	racy is still limited, since		2	

Received: 5 December 2018 / Revised: 25 December 2018 / Accepted: 1 January 2019 / Published: 4 January 2019

m/2072-4292/11/1/83

s://doi.org/10.3390/rs11010083

2nd Publication (Q1-Tier1, ISI Journal, 2020)

Title: Semantic Labeling in Remote Sensing Corpora Using Feature Fusion-Based Enhanced Global Convolutional Network with High-Resolution Representations and Depthwise Atrous Convolution, 2020

Panboonyuen, T.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P.; Vateekul, P. Semantic Labeling in Remote Sensing Corpora Using Feature Fusion-Based • Enhanced Global Convolutional Network with High-Resolution Representations and Depthwise Atrous Convolution. Remote Sens. 2020, 12, 1233.

iafari File Edit View History Bookman	ks Window Help 🗣 😁 🌒 👰 🤀 🕙 🖇 🛜 📢 81% 🗐 🔯 ABC Fri 13:13 Kao Q 🧔 💳	
	Journals Information Author Services Initiatives About Sign In / Sign Up Submit	Journals / Remote Sensing / Volume 12
Search for Articles:	/ Keyword Author / Affiliation Remote Sensing T All Article Types T Search Advanced	
Journals / Remote Sensing / Volume 12	/ issue 8 / 10.3390/rs12081233	st.
* remote sensing	< ,	remote sensing
Submit to this Journal	Open Access Article Semantic Labeling in Remote Sensing Corpora Using	
Review for this Journal	Feature Fusion-Based Enhanced Global Convolutional	
Edit a Special Issue	Network with High-Resolution Representations and Depthwise Atrous Convolution	
Article Menu	by (1) Teerapong Panboonyuen 1 🗠 🔍 (1) Kulsawasd Jitkajornwanich 2 🗠 🔍 (1) Siam Lawawirojwong 3 🗠 💿	
Article Overview	Chulakongkom University Bata Analysis and IoT Centre (CUBIC), Department of Computer Engineering, Faculty of Exercise Chulakongkom University Department Bd. Pathumyne, Bacetok 10330, Thailand	<u>https://www.mdpi.cc</u>
 Abstract Open Access and Permissions 	² Data Science and Computational Intelligence (DSCI) Laboratory, Department of Computer Science, Faculty of Science, King Necessity prediction of Technology Lethogana Characterization and Academic Science and Acade	
Share and Cite	³ Geo-Informatics and Space Technology Development Agency (Public Organization), 120, The Government Complex, Chaeng Utility of the state of th	
 Related Articles 	* Author to whom correspondence should be addressed.	
 Order Article Reprints 	Remote Sens 2020, 12(8) 1233: https://doi.org/10.3390/rs12081233	Romoto Sons 2020 12(8) 1233. h
Article Versions	Received: 5 March 2020 / Revised: 1 April 2020 / Accepted: 9 April 2020 / Published: 12 April 2020	nennole Jens. 2020, 12(0), 1233, 11
Export Article	(This article belongs to the Special Issue Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images)	
Related Info Links	View Full-Text Download PDF Browse Figures Review Reports Cite This Paper	
More by Authors Links		

Received: 5 December 2018 / Revised: 25 December 2018 / Accepted: 1 January 2019 / Published: 4 January 2019

<u>m/2072-4292/12/8/1233</u>

ttps://doi.org/10.3390/rs12081233

Detail of All Corpora (1) Support Value

ISPRS							
		Support		ISAN	LC129048		
Class	٥	778261	Imporvious Surfaces			Support	
Class	1	020659	Buildings	Class	0	333917	
Class	2	920056	Dulluings	Class	1	892808	
Class	2	332/91	Low vegetation	Class	2	32180	
Class	3	393875	Iree	Class	2	52100	
Class	4	32939	Car	Class	3	523588	÷.

			NAN
	Support		
Agriculture	443917	0	Class
Forest	1022641	1	Class
Miscellaneous	20039	2	Class
Urban	61773	3	Class
Water	7086	4	Class

Detail of All Corpora (2) Training Size

Public Data Set: 2D Semantic Labeling - Vaihingen

- Training Set: 512x512 (210 Images)
- Validation Set: 512x512 (30 Images)
- Testing Set: 512x512 (30 Images)

Private Data Set: GISTDA Nan Province Corpus

- Training Set: 512x512 (1,770 Images)
- Validation Set: 512x512 (49 Images)
- Testing Set: 512x512 (100 Images)

Private Data Set: GISTDA ISAN zone Corpus

- Training Set: 512x512 (2,115 Images)
- Validation Set: 512x512 (49 Images)
- Testing Set: 512x512 (100 Images)

NAN		
		Support
Class	0	443917
Class	1	1022641
Class	2	20039
Class	3	61773
Class	4	7086

ISAN	LC129048	
		Support
Class	0	333917
Class	1	892808
Class	2	32180
Class	3	523588

Miscellaneous Para Rubber Pine Apple

Corn

ResNet - Architecture

P1 Satellit

	layer name	output size	18-layer	34-layer	50-layer	101-layer	
Satellite	conv1	112×112			7×7, 64, stride 2		
	conv2_x	56×56	3×3 max pool, stride 2				
			$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix}$	
	conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix}$	
ResNet 50	conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix}$	
ResNet 101	conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix}$	
		1×1		ave	rage pool, 1000-d fc,	softmax	
ResNet 152	FL	OPs	1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^{9}	

3	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix}$	×3
4	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix}$	×8
23	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix}$	×36
3	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix}$	×3

Problem Solve: Unbalanced Class

Zerphed commented on May 30, 2017

@JeffKo427 Thanks! This is in fact what I am using right now. The losses seem quite bit, but I guess that was to be expected:

def weighted_pixelwise_crossentropy(class_weights):

```
def loss(y_true, y_pred):
    epsilon = _to_tensor(_EPSILON, y_pred.dtype.base_dtype)
    y_pred = tf.clip_by_value(y_pred, epsilon, 1. - epsilon)
    return - tf.reduce_sum(tf.multiply(y_true * tf.log(y_pred), class_weights))
return loss
```

https://github.com/keras-team/keras/issues/6261

How does mean image subtraction work?

2 Answers

active oldest

In deep learning, there are in fact different practices as to how to subtract the mean image.

Subtract mean image

The first way is to subtract mean image as @lejlot described. But there is an issue if your dataset images are not the same size. You need to make sure all dataset images are in the same size before using this method (e.g., resize original image and crop patch of same size from original image). It is used in original ResNet paper, see reference here.

Subtract the per-channel mean

The second way is to subtract per-channel mean from the original image, which is more popular. In this way, you do not need to resize or crop the original image. You can just calculate the per-channel mean from the training set. This is used widely in deep learning, e.g, Caffe: <u>here</u> and <u>here</u>. Keras: <u>here</u>. PyTorch: <u>here</u>. (PyTorch also divide the per-channel value by standard deviation.)

share improve this answer

edited Dec 6 '17 at 1:18

answered Dec 5 '17 at 9:49

add a comment

https://stackoverflow.com/questions/44788133/how-does-mean-image-subtraction-work

Other Layers

- Interpolation Layer: Interpolation layer •
 - performs resizing operation along the spatial dimension.
 - In our network, we use bilinear interpolation.
- Elementwise Layer: Elementwise layer
 - performs elementwise operations on two or more previous layers, in which the feature maps must be of the same number of channels and the same size.
 - There are three kinds of elementwise operations: ۲
 - product, sum, max. ٠
 - In our network, we use sum operation. ٠

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers ۲
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Design CNNs
- Depthwise Atrous

- Attention is helpful to focus on what we want
- We utilize channel attention to select the important features

Refers to Squeeze-and-Excitation Networks and BiseNet

Attention

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Design CNNs
- Depthwise Atrous (7)

We utilize channel attention to select the

important features

Refers to Squeeze-and-Excitation Networks and BiseNet

Attention

Attention is helpful to focus on what we want

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Design CNNs
- (7) Depthwise Atrous

- Attention is helpful to focus on what we want
- We utilize channel attention to select the important features

Attention

it we want ct the

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers ۲
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Design CNNs •
- Depthwise Atrous •

Matrix Calculation of Self-Attention

- ٠ The first step is to calculate the Query, Key, and Value matrices.
- We do that by packing our embeddings into a matrix X, and multiplying it by the weight matrices we've trained (WQ, WK, WV).

http://jalammar.github.io/illustrated-transformer/

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Design CNNs
- (7) Depthwise Atrous

Figure 2. Residual learning: a building block.

1. The identity shortcuts (x) can be directly used when the input and output are of the same dimensions.

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$
 (1)

Residual block function when input and output dimensions are same

2. When the dimensions change, A) The shortcut still performs identity mapping, with extra zero entries padded with the increased dimension. B) The projection shortcut is used to match the dimension (done by 1*1 conv) using the following formula

 $\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$

(2)

Residual block function when the input and output dimensions are not same.

https://medium.com/@14prakash/

ResNet

Evaluation

>>> from sklearn.metrics import f1_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> f1_score(y_true, y_pred, average='macro') 0.26... >>> f1_score(y_true, y_pred, average='micro') 0.33... >>> f1_score(y_true, y_pred, average='weighted') 0.26... >>> f1_score(y_true, y_pred, average=None) array([0.8, 0., 0.])

4.4. Evaluation metrics

To assess the quantitative performance, two overall benchmark metrics are used, i.e., F1 score (F1) and intersection over union (IoU). F1 is defined as

$$F1 = 2 \frac{Pre \times Rec}{Pre + Rec}, Pre = \frac{tp}{tp + fp}, Rec = \frac{tp}{tp + fp}$$

Here, *tp*, *fp* and *fn* are the number of true positives, false positives and false negatives, respectively. IoU is defined as:

$$\mathrm{IoU}(\mathcal{P}_m, \mathcal{P}_{gt}) = \frac{|\mathcal{P}_m \cap \mathcal{P}_{gt}|}{|\mathcal{P}_m \cup \mathcal{P}_{gt}|},$$

where \mathcal{P}_{gt} is the set of ground truth pixels and \mathcal{P}_m is the set of prediction pixels, ' \cap ' and ' \cup ' denote *intersection* and *union* operations,

(10)

(9)

Evaluation

```
>>> from sklearn.metrics import f1_score
>>> y_{true} = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')
0.26...
>>> f1_score(y_true, y_pred, average='micro')
0.33...
>>> f1_score(y_true, y_pred, average='weighted')
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([0.8, 0., 0.])
```

1. Micro-average Method

In Micro-average method, you sum up the individual true positives, false positives, and false negatives of the system for different sets and the apply them to get the statistics. For example, for a set of data, the system's

```
True positive (TP1) = 12
False positive (FP1) = 9
False negative (FN1) = 3
```

Then precision (P1) and recall (R1) will be 57.14% = $\frac{TP1}{TP1+FP1}$ and 80% = $\frac{TP1}{TP1+FN1}$

and for a different set of data, the system's

True positive (TP2) = 50 False positive (FP2) = 23 False negative (FN2) = 9

Then precision (P2) and recall (R2) will be 68.49 and 84.75

Now, the average precision and recall of the system using the Micro-average method is

Miero average of precision	<i>TP1+TP2</i>	_	12+50	
where average of precision	- TP1+TP2+FP1+FP2		12+50+9+	
Micro average of recall -	TP1+TP2		12+50	
where average of recall =	TP1+TP2+FN1+FN2 -	12-	+50+3+9	-

The Micro-average F-Score will be simply the harmonic mean of these two figures.

 $\frac{1}{23} = 65.96$

= 83.78

Evaluation

```
>>> from sklearn.metrics import f1_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')
0.26...
>>> f1_score(y_true, y_pred, average='micro')
0.33...
>>> f1_score(y_true, y_pred, average='weighted')
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([0.8, 0., 0.])
```

2. Macro-average Method

The method is straight forward. Just take the average of the precision and recall of the system on different sets. For example, the macro-average precision and recall of the system for the given example is

Macro-average precision = $\frac{P_1+P_2}{2} = \frac{57.14+68.49}{2} = 62.82$ Macro-average recall = $\frac{R1+R2}{2} = \frac{80+84.75}{2} = 82.25$

The Macro-average F-Score will be simply the harmonic mean of these two figures.

Suitability Macro-average method can be used when you want to know how the system performs overall across the sets of data. You should not come up with any specific decision with this average.

On the other hand, micro-average can be a useful measure when your dataset varies in size.

share improve this answer follow

answered Dec 30 '16 at 9:53

Traditional Image Segmentation Network

- (1) Computer Vision Tasks
- (2) CNNs •
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion •
- (6) Design CNNs •

Upsampling: Unpooling or strided transpose convolution

Predictions: HXW

Traditional Image Segmentation Network: Sample (1)

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Design CNNs

Decoder Network

Traditional Image Segmentation Network: Sample (2)

- (1) Computer Vision Tasks
- (2) CNNs •
 - Traditional CNNs •
 - Deep Learning Layers
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Design CNNs

Traditional Image Segmentation Network: Sample (3)

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs •
 - Deep Learning Layers ٠
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Design CNNs

- (1) Computer Vision Tasks
- (2) CNNs •
 - Traditional CNNs
 - Deep Learning Layers ٠
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Design CNNs

Decoder Network

Traditional Image Segmentation Network: Sample (5)

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs •
 - Deep Learning Layers
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Design CNNs

Decoder Network

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs •
 - Deep Learning Layers ٠

F

- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Design CNNs

G and M act as Identity Functions. Both the Networks Give same output

19 layers

7.3

ILSVRC'14

VGG

ResNet (Microsoft)

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs •
 - Deep Learning Layers ٠
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Design CNNs

Hard to get F(x)=x and make y=x an identity mapping

Easy to get F(x)=0 and make y=x an identity mapping

Encoder Network (VGG (Residual) Style)

https://medium.com/@14prakash/

- (1) Computer Vision Tasks
- (2) CNNs •
 - Traditional CNNs •
 - Deep Learning Layers
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion •
- (6) Design CNNs

- More layers is better
 - but because of the vanishing gradient problem
 - model weights of the first layers can not be updated correctly through the backpropagation of the error gradient
 - the chain rule multiplies error gradient values lower than one and then, when the gradient error comes to the first layers, its value goes to zero
- Objective of Resnet is preserve the gradient

 $\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$

ResNet (Microsoft)

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs •
 - Deep Learning Layers ٠
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Path: LC123047

Satellite Image without ground truth

Path: LC129047

Path: LC129048

Satellite Image without ground truth

Path: LC130046

Satellite Image without ground truth

Path: LC131046

Satellite Image without ground truth

Path: LC131047

Path: LC131048

Satellite Image without ground truth

Path: LC132046

Satellite Image without ground truth

Path: LC132047

Path: LC132048
Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Satellite Image without ground truth

Path: LC128051

Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Path: LC129048

Experimental Results with Full Proposed Method (GCN152-TL-A-FF-DA)

Path: LC129054

New Idea (1)

Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

New Idea (1)

Acuna, David, Amlan Kar, and Sanja Fidler. "Devil is in the edges: Learning semantic boundaries from noisy annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

Page 221

Outline | Related Theory

- Introduction
- Related Theory
- Related Works
- Methodology (Proposed Method)
- Experimental Results
- Objectives and Procedure
- Conclusions
- Publication and Reference

Page 222

- (1) Computer Vision Tasks
- (2) Deep Convolutional Neural Networks (CNNs)
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

Page 223

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers ٠
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

Encoder Network (VGG Style)

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

Filters from Zeiler + Fergus 2013

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

Each feature can be discovered without the need for seeing the exponentially large number of configurations of the other features

- Consider a network whose hidden units discover the following features:
 - Person wears glasses
 - Person is female
 - Person is a child
 - Etc.
- If each of *n* feature requires O(k) parameters, need O(nk) examples
- Parallel composition of features: can be exponentially advantageous
- Non-distributed non-parametric methods would require $O(n^d)$ examples

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

Page 229

Traditional Image Segmentation Network

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers

Downsampling:

- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

Design network as a bunch of convolutional layers, with

Upsampling: Unpooling or strided transpose convolution

Predictions: H x W

Convolution Layer

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers ٠
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Depthwise Convolu
- (7) Design CNNs \bullet

https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/

Page 231

- (1) Computer Vision Tasks
- (2) CNNs •
 - Traditional CNNs •
 - Deep Learning Layers ۲
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

Hard to get F(x)=x and make y=x an identity mapping

Easy to get F(x)=0 and make y=x an identity mapping

Encoder Network (VGG (Residual) Style)

Page 232

Max-Pooling and Max-Unpooling Layer

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

Input: 2 x 2

2

4

1

3

Corresponding pairs of downsampling and upsampling layers

Max Unpooling Use positions from pooling layer

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Output: 4 x 4

Learnable Up-sampling: Transpose Convolution

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

Output: 4 x 4

Sum where output overlaps

Filter moves 2 pixels in the <u>output</u> for every one pixel in the <u>input</u>

Stride gives ratio between movement in output and input

Learnable Up-sampling: Transpose Convolution

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Depthwise Convolution
- Design CNNs ()

- Interpolation Layer: Interpolation layer
 - performs resizing operation along the spatial dimension.
 - In our network, we use bilinear interpolation.

Other Layers

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers ۲
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Depthwise Convolution
- Design CNNs •

- Elementwise Layer: Elementwise layer
 - performs elementwise operations on two or more previous layers, in which the feature maps must be of the same number of channels and the same size.
 - There are three kinds of elementwise operations:
 - product, add (sum), max. ٠
 - In our network, we use add operation. •

Other Layers

- (1) Computer Vision Tasks
- (2) CNNs •
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion •
- (6) Depthwise Convolution
- Design CNNs •

- ReLU Layer: The rectified linear unit (ReLU) (Hinton, 2010)
 - It is usually chosen as the nonlinearity layer
 - It thresholds the non-positive value as zero and keeps the positive value unchanged
 - It can achieve a considerable reduction in training time
- Batch Normalization Layer:
 - It normalizes layer inputs to a Gaussian distribution with zero-mean • and unit variance.
 - Aiming at addressing the problem of internal covariate shift
- Softmax Layer: The softmax nonlinearity (Bridle, 1989)
 - It is applied to the output layer in the case of multiclass classification
 - It outputs the posterior probabilities over each category

Other Layers

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

"Transfer learning is the improvement of learning in a new task through the transfer of knowledge from a related task that has already been learned."

with transfer without transfer

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers ۲
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Depthwise Convolution
- Design CNNs

- Attention is helpful to focus on what we want
- We utilize channel attention to select the important features

Refers to Squeeze-and-Excitation Networks and BiseNet

Attention

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

 We utilize channel attention to select the important features

Refers to Squeeze-and-Excitation Networks and BiseNet

Attention

Attention is helpful to focus on what we want We utilize channel attention to select the

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

- Attention is helpful to focus on what we want
- We utilize channel attention to select the important features

Attention

it we want ct the

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion •
- (6) Depthwise Convolution
- (7) Design CNNs •

- The features of the two paths are different in level of feature representation
- Simply sum up low and high features
 - Utilization of low-level features for objects refinement

Tai, Lei, et al. "PCA-aided fully convolutional networks for semantic segmentation of multi-channel fMRI." 2017 18th International Conference on Advanced Robotics (ICAR). IEEE, 2017.

Feature Fusion (1)

- (1) Computer Vision Tasks
- (2) CNNs •
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention •
- (5) Feature Fusion •
- (6) Depthwise Convolution
- Design CNNs •

- The features of the two paths are different in level of feature representation
- Fuse spatial path (low level features) and context path (high level feature) together

(c) Feature Fusion Module

Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018). Bisenet: Bilateral segmentation network for real-time semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 325-341).

Feature Fusion (2)

Depth-wise Convolution

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers ٠
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separableconvolution-37346565d4ec

Filters and image have been broken into three different channels and then convolved separately and stacked thereafter

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

This is the standard discrete convolution:

$$(F * k)(\mathbf{p}) = \sum_{s+t=p} F(s)k(t)$$

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Depth-wise Convolution

Dilated Convolution (Atrous Convolution)

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

When l = 1, the dilated convolution becomes as the standard convolution.

 $(F *_l k)(\mathbf{p}) = \sum_{\mathbf{s}+l\mathbf{t}=\mathbf{p}} F(\mathbf{s})k(\mathbf{t})$

The dilated convolution follows:

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Multi-scale context aggregation by dilated convolutions

Dilated Convolution (Atrous Convolution)

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

Multi-scale context aggregation by dilated convolutions

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

	1

Dilated Convolution (Atrous Convolution)

(6) Depthwise Convolution

- Multi-scale context aggregation by dilated convolutions
- 3×3 Depthwise separable convolution decomposes a standard convolution into (a) a depthwise convolution (applying a single filter for each input channel) and (b) a pointwise convolution (combining the outputs from depthwise convolution across channels). In this work, we explore atrous separable convolution where atrous convolution is adopted in the depthwise convolution, as shown in (c) with rate = 2.

Dilated Convolution (Atrous Convolution)

• (6) Depthwise Convolution vs Pointwise Convolution

Depthwise Convolution

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Dilated Convolution (Atrous Convolution)

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention •
- (5) Feature Fusion •
- (6) Depthwise Convolution
- Design CNNs •

Multi-scale context aggregation by dilated convolutions

(a) Encoder-decoder pyramid

(c) Image pyramid

Figure 2. Different pyramids for capturing multi-scale features.

Pang, Y.; Li, Y.; Shen, J.; Shao, L. Towards bridging semantic gap to improve semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 4230–4239.

(b) Spatial pyramid pooling

- (d) Parallel pyramid

Dilated Convolution (Atrous Convolution)

Multi-scale context aggregation by dilated convolutions

(a) Semantic Enhancement Module

(b) Semantic Enhancement Module with full sampling

(c) Boundary Attention Module

Figure 4. Semantic Modules in the proposed parallel pyramid method for improving feature fusion. We introduce semantic enhancement modules (a) and (b) to enhance the semantics of shallow features, and propose a boundary attention module (c) to extract complementary information from very shallow features and enhance the deep features. 'DA' represents depthwise atrous convolution. ' dr_i ' represents the dilation rate. ' r_i ' represents the kernel size of convolutional layer. 'BA' represents boundary attention.

Pang, Y.; Li, Y.; Shen, J.; Shao, L. Towards bridging semantic gap to improve semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 4230–4239.

Page 252
Dilated Convolution (Atrous Convolution)

- (1) Computer Vision Tasks
- (2) CNNs •
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention •
- (5) Feature Fusion •
- (6) Depthwise Convolution
- (7) Design CNNs •

Multi-scale context aggregation by dilated convolutions

Figure 5. Atrous convolution with sparse sampling in SeEM and full sampling in SeEM-FS.

Pang, Y.; Li, Y.; Shen, J.; Shao, L. Towards bridging semantic gap to improve semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 4230–4239.

- (1) Computer Vision Tasks
- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers ٠
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

Page 254

Depth Scaling

- (1) Computer Vision Tasks
- (2) CNNs •
 - Traditional CNNs
 - Deep Learning Layers ٠
- (3) Transfer Learning lacksquare
- (4) Channel Attention •
- (5) Feature Fusion •
- (6) Depthwise Convolution
- (7) Design CNNs •

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

Compound Scaling

• (1) Computer Vision Tasks

- (2) CNNs
 - Traditional CNNs
 - Deep Learning Layers
- (3) Transfer Learning
- (4) Channel Attention
- (5) Feature Fusion
- (6) Depthwise Convolution
- (7) Design CNNs

Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018). Bisenet: Bilateral segmentation network for real-time semantic segmentation. In *Proceedings of the European Conference on Computer Vision (ECCV)* (pp. 325-341).

Compound Scaling

Context Path Style (Compound Scaling)

Page 256