CU-ICU: Customizing Unsupervised Instruction-Finetuned Language Models for ICU Datasets via Text-to-Text Transfer Transformer

Abstract

Integrating large language models into specialized domains like healthcare presents unique challenges, including domain adaptation and limited labeled data. We introduce CU-ICU, a method for customizing unsupervised instruction-finetuned language models for ICU datasets by leveraging the Text-to-Text Transfer Transformer (T5) architecture. CU-ICU employs a sparse fine-tuning approach that combines few-shot prompting with selective parameter updates, enabling efficient adaptation with minimal supervision. Our evaluation across critical ICU tasks—early sepsis detection, mortality prediction, and clinical note generation—demonstrates that CU-ICU consistently improves predictive accuracy and interpretability over standard fine-tuning methods. Notably, CU-ICU achieves up to a 15% increase in sepsis detection accuracy and a 20% enhancement in generating clinically relevant explanations while updating fewer than 1% of model parameters in its most efficient configuration. These results establish CU-ICU as a scalable, low-overhead solution for delivering accurate and interpretable clinical decision support in real-world ICU environments.

Publication
In the 14th Critical Care Conference

Teerapong Panboonyuen
Teerapong Panboonyuen

My research focuses on leveraging advanced machine intelligence techniques, specifically computer vision, to enhance semantic understanding, learning representations, visual recognition, and geospatial data interpretation.

Related