

CU-ICU: Customizing Unsupervised Instruction-Fine Tuned Language Models for ICU Datasets via Text-to-Text Transfer Transformer

Teerapong Panboonyuen

Chulalongkorn University

https://kaopanboonyuen.github.io/

🚑 Why I Created CU-ICU

Because every second in the ICU matters.

🚺 The Problem

• ICU staff face information overload, high stress, and critical decisions under time pressure.

🔽 My Vision

- Build AI tools that think like an ICU assistant
- Reduce cognitive burden, free time for patient care

Series Why I Created CU-ICU (Cont.)

V The Solution: CU-ICU

- A specialized Large Language Model (LLM) for ICU workflows
- Understands Thai medical context and national guidelines
- Capable of clinical Q&A, sepsis alerts, reasoning, and protocol suggestions

Al should <u>'not replace'</u> doctors — it should amplify their impact.

What is **CU-ICU**?

CU-ICU is a Thai-adaptable AI (LLM) assistant built on:

- **V** Flan-T5, an instruction-tuned transformer
- **V** Trained with ICU logic from real data
- **V** Fine-tuned via LoRA, AdaLoRA, or IA³ (efficient, few parameters)
- C Equipped with a custom CU-ICU Loss to reduce hallucination and increase clarity

https://jalammar.github.io/illustrated-transformer/

Dataset Used – HiRID from Switzerland

Property	Detail
Name	HiRID (High-Resolution ICU Dataset)
Source	Bern University Hospital, Switzerland
Access	https://physionet.org/content/hirid/1.1.1/
Size	~33,000 patient ICU episodes
Туре	Vitals (per minute), interventions, nurse charts
Language	English

the translated logic into Thai context via instruction-based prompts, creating clinical Q&A datasets.

Column Name	Description
Method	PEFT technique used: LoRA, AdaLoRA, or IA ³
Config	Hyperparameter setting for that method (e.g., Rank, Budget, Scope)
Params (%)	% of total model parameters updated during fine-tuning (lower = more efficient)
Sepsis Acc.	Accuracy on binary classification task: Early sepsis detection
Mortality Acc.	Accuracy on binary classification task: ICU mortality prediction
Note nBERTs	Normalized BERTScore: measures quality of generated clinical explanations
Avg	Average of all three task scores for cross-task comparison (unweighted)

Evaluation Details

- 🔽 Classification Tasks (Sepsis & Mortality)
- Metric: Accuracy (%)
- **Input**: prompt + patient vitals/symptoms
- **Target**: Binary label (e.g., "septic" or "not septic")
- **Evaluation**: Majority prediction from model-generated answer

Full comparison of FLAN-T5 fine-tuning with PEFT

Method	Config	Params (%)	Sepsis Acc.	Mortality Acc.	Note nBERTs	Avg
3*LoRA	Rank=4	1.2%	79.4 ± 2.1	76.8 ± 2.3	$23.9{\scriptstyle~\pm1.9}$	60.0
	Rank=8	3.1%	81.2 ± 1.8	$78.5{\scriptstyle~\pm 2.0}$	26.4 ± 1.7	62.0
	Rank=16, Drop=0.1	6.2%	83.1 ± 1.5	79.6 ± 1.8	28.3 ± 1.5	63.7
3*AdaLoRA	Budget=0.5, Init Rank=4	2.1%	82.2 ± 1.9	78.4 ± 2.1	27.1 ± 1.8	62.6
	Budget=1.0, Init Rank=8	2.9%	$83.5{\scriptstyle~\pm1.6}$	80.9 ±1.9	29.8 ± 1.3	64.7
	Budget=1.5, Init Rank=16	5.4%	84.2 ±1.3	80.3 ± 1.7	30.6 ± 1.4	65.0
$2*(IA)^3$	Default (All Layers)	0.9%	85.6 ±1.5	80.2 ± 1.7	32.1 ±1.5	66.0
	Reduced S pe (Last 6)	0.5%	83.8 ± 1.7	78.7 ± 2.0	30.2 ± 1.6	E 2

Evaluation Details

Text Generation Task (Note Generation)

- Metric: Normalized BERTScore (nBERTs), Accuracy
- **Input**: Question (e.g., "What to do for low urine output?")
- **Target**: Short free-text clinical explanation
- Evaluation: Compare model output to gold reference using Accuracy and normalize across seeds

Performance Highlights

IA³ achieves the **highest average score** (66.0) with **only 0.9% parameters** trained.

AdaLoRA performs second best with strong control over trade-offs via budget tuning.

LoRA shows consistent gains as rank increases, but with higher parameter cost.

CU-ICU LLM DEMO

Future Work

Next steps:

- Thai-specific EMR fine-tuning
- Multimodal input (X-ray, ECG + text)
- Integration with nursing dashboards

Conclusion

• CU-ICU: Smarter Care, Faster Decisions

AI-LLM-powered assistant for ICU teams
Supports critical decision-making with real-time insights
Thai-context optimized for language & clinical guidelines
Reduces workload, improves patient outcomes
Designed with ethics, safety, and human-in-the-loop approach

Goal: Empower healthcare, not replace it.

A Thank You for Your Attention!

Stay Curious. Stay Critical. Stay Compassionate.

Have more questions?

Let's keep learning, coding, and caring — together.

Teerapong Panboonyuen

http://kaopanboonyuen.github.io/

