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® Introduction

Introduction

®* Object classification from images is among the many practical examples where deep

learning algorithms have successfully been applied.

® In our work, we present an improved deep convolutional encoder-decoder network (DCED) with

Landscape metrics for segmenting road objects from aerial images.

®* The most recent DCED approach for object segmentation, namely SegNet, is used as one of the

benchmarks in evaluating our method.

®* The experiments were conducted on a well-known aerial imagery, Massachusetts roads dataset.
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® Related Work

(1) Deep Learning for Semantic Segmentation

® Fully convolutional networks (FCN) was presented by J. Long, E. Shelhamer and T. Darrell. (2015)

®* Some of the pooling layers were skipped: layer 3 (FCN-8s), layer 4 (FCN-16s), and layer 5 (FCN-325s).

® Deconvolutional neural network (DeCNN) was proposed by H. Noh et al. (2015)

® Deep convolutional encoder-decoder (DCED) was proposed by V. Badrinarayanan (2015)
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® (1) Deep Learning for Semantic Segmentation

PASCAL VOC Data Sets GaPASCALZ |

® PASCAL VOC is a standard recognition dataset and benchmark with detection and semantic segmentation

challenges.

® The semantic segmentation challenge annotates 20 object classes and background.
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® Related Work

(1) Deep Learning for Semantic Segmentation (Results) GaPASCALZ

® Fully convolutional networks (FCN) was presented by J. Long, E. Shelhamer and T. Darrell. (2015)
®* Performance: Accuracy = 59.4 percent (FCN)

®* Some of the pooling layers were skipped: layer 3 (FCN-8s), layer 4 (FCN-16s), and layer 5 (FCN-325s).

®  Performance: Accuracy = 62.7 percent (FCN-8s) , 62.4 percent (FCN-16s)

® Deconvolutional neural network (DeCNN) was proposed by H. Noh et al. (2015)
® Performance: Accuracy = 72.5 percent (DeCNN)

® Deep convolutional encoder-decoder (DCED) was proposed by V. Badrinarayanan (2015)

® Performance: Accuracy = 80.1 percent (DCED)
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* Fully convolutional networks (FCN) was presented by J. Long, E. Shelhamer and T. Darrell. (2015)

® Performance: Accuracy = 59.4 percent (FCN)
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Related Work (Standard data set)

® Massachusetts roads dataset (Mass. Roads). (Very high resolution imagery)
* 1500x1500 pixels (Resolution = 1 meter?/pixel)

® Training set = 1108, Validation set = 14, Test set = 49

® made publicly available on website: https://www.cs.toronto.edu/~vmnih/data/



https://www.cs.toronto.edu/~vmnih/data/

® Related Work

. . O
(2) Deep Learning for Road Segmentation G PASCALZ

® S. Saito et al. (2016) use FCN architecture for segmenting road objects on Mass. road data set.
® Performance: F1 = 0.742

® S. Muruganandham (2016) use DeCNN and FCN-8s for segmenting road objects on Mass. Road data

set.

® Performance: F1 (DeCNN) = 0.657

® Performance: F1 (FCN-8s) = 0.762
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® Related Work

(3) Activation Functions in Deep Learning ’%PASCALZ

®* Clevert et al. (2016) proposed "exponential linear unit" (ELU) which speeds up learning in deep

neural networks and leads to higher classification accuracies.
®  Training and testing on CIFAR-10 data set, CIFAR-100 sets
° Performance: Error = 6.55 and 24.28

® AlexNet has an error: 18.04 and 45.80, CNN has an error 7.25 and 33.71
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®* Clevert et al. (2016) proposed "exponential linear unit" (ELU) which speeds up learning in deep

neural networks and leads to higher classification accuracies.
® Training and testing on CIFAR-10 data set, CIFAR-100 sets
®  Performance: Error = 6.55 and 24.28

® AlexNet has an error: 18.04 and 45.80, CNN has an error 7.25 and 33.71

Network CIFAR-10 (test error %)  CIFAR-100 (test error %) augmented
AlexNet 18.04 45.80

DSN 7.97 34.57 Vv
NiN 8.81 35.68 Vv
Maxout 9.38 38.57 4
All-CNN 7.25 33.71 Vv
Highway Network 7.60 32.24 Vv
Fract. Max-Pooling 4.50 27.62 4
ELU-Network 6.55 24.28
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Convolutional Encoder-Decoder

Output

® Three aspects of the proposed method are enhanced: “ .

* (1) Modification of DCED architecture. = ELU-DCED RGB Image [ N oy Segmentation
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Methodology (Proposed Method)

Three aspects of the proposed method are enhanced:
RelLU = ELU
(1) Modification of DCED architecture. = ELU-DCED

(2) Data amplification

(3) Adoption of landscape metrics.
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Methodology (Proposed Method)

® Three aspects of the proposed method are enhanced:
* (1) Modification of DCED architecture. = ELU-DCED

® (2) Data amplification —> ELU-DCED-R (**R means Rotate images)

®* (3) Adoption of landscape metrics.
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Methodology (Proposed Method)

Three aspects of the proposed method are enhanced: :
perimeter
* (1) Modification of DCED architecture. = ELU-DCED Shape Index = 4X\/El
* (2) Data amplification = ELU-DCED-R (**R means Rotate images) A
®* (3) Adoption of landscape metrics. —> ELU-DCED-RL (**L means Landscape Metrics) I
: I
L R R I
I
I
Shape index : : I
=143 § |
/

Perimeter =14, area = 6; shape idx = 1.43  Perimeter 16, area = 16; shape idx = 1.00
N /7
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® The experiments were conducted on a standard benchmark, “Massachusetts roads dataset”
(Mass. Roads)
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® The experiments were conducted on a standard benchmark, “Massachusetts roads dataset”

(Mass. Roads)

®* Compared our proposed method (ELU-DCED, ELU-DCED-R, ELU-DCED-RL) to four baselines:

basic-model (CNN), FCN-no-skip, FCN-8s, and SegNet.

®* In terms of precision, recall, and F1 (Performance Evaluations)

. TP
Precision =

TP + FP

(D

Recall =

TP

TP + FN

2

F1

_ 2 x Precision x Recall

Precision + Recall

®3)

TP denote the number of true positives (the number of correctly classified road pixels), TN denote the number of true negatives (the number of correctly classified non-road pixels),

FP denote the number of false positives (the number of mistakenly classified road pixels), and FN denote the number of false negatives (the number of mistakenly classified non-road pixels).

48



Overview

® Introduction
® Related Work
® Methodology
® Experiment

® Results

® Discussion

® Conclusion

49



Results

Basic-model [2] 0.657 0.657 0.657
FCN-no-skip [2] 0.742 0.742 0.742

Baseline
FCN-8s [2] 0.762 0.762 0.762
SegNet [6] 0.773 0.765 0.768
ELU-DCED 0.852 0.733 0.788

Proposed
ELU-DCED-R 0.78 0.847 0.812

Method
ELU-DCED-RL 0.854 0.861 0.857
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Extracted roads with removing noises.
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® Discussin

Discussion

® Discussion on Enhanced Deep Learning Framework

® For the effect of ELU, Result shows that the precision of ELU-SegNet is higher than that of the
original SegNet by 7.9%—without losing recall. This can imply that ELU is more robust than
ReLU to detect road pixels.

®* The result also shows that the recall of ELU-SegNet-R is higher than that of ELU-SegNet by 11.49%,

meaning that it can detect more patterns of the roads.

® Discussion on Landscape Metrics

®* The landscape metrics are applied to our framework in order to remove all inaccurately extracted

roads (false positives: FP), considered as a negative effect of the rotated image strategy as discussed in

the previous section.

® Result shows that the precision of the network is increased by 7.4% by applying the landscape metrics

filtering. This shows that the FP issue has been resolved.
59



® Discussin

Discussion

® Discussion on Enhanced Deep Learning Framework

® For the effect of ELU, Result shows that the precision of ELU-SegNet is higher than that of the original
SegNet by 7.9%—without losing recall. This can imply that ELU is more robust than RelLU to detect

road pixels.

® The result also shows that the recall of ELU-SegNet-R is higher than that of ELU-SegNet by

11.4%, meaning that it can detect more patterns of the roads.

® Discussion on Landscape Metrics

®* The landscape metrics are applied to our framework in order to remove all inaccurately extracted

roads (false positives: FP), considered as a negative effect of the rotated image strategy as discussed in
the previous section.

® Result shows that the precision of the network is increased by 7.4% by applying the landscape metrics

filtering. This shows that the FP issue has been resolved.
60



® Discussin

Discussion

® Discussion on Enhanced Deep Learning Framework
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®* The result also shows that the recall of ELU-SegNet-R is higher than that of ELU-SegNet by 11.49%,

meaning that it can detect more patterns of the roads.

® Discussion on Landscape Metrics
® The landscape metrics are applied to our framework in order to remove all inaccurately
extracted roads (false positives: FP), considered as a negative effect of the rotated image
strategy.
® Result shows that the precision of the network is increased by 7.4% by applying the landscape metrics

filtering. This shows that the FP issue has been resolved.
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SegNet by 7.9%—without losing recall. This can imply that ELU is more robust than RelLU to detect
road pixels.

®* The result also shows that the recall of ELU-SegNet-R is higher than that of ELU-SegNet by 11.49%,

meaning that it can detect more patterns of the roads.

® Discussion on Landscape Metrics
®* The landscape metrics are applied to our framework in order to remove all inaccurately extracted
roads (false positives: FP), considered as a negative effect of the rotated image strategy as discussed in

the previous section.

®* Result shows that the precision of the network is increased by 7.4% by applying the landscape

metrics filtering. This shows that the FP issue has been resolved.
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® Conclusion

Conclusion

®* In this work, we present a novel deep learning network framework to extract road objects from aerial

images.
®* The network is based on Deep Convolutional Encoder-Decoder Network (DCED), called “SegNet.”

®* Toimprove the network’s precision, we incorporate the recent activation function, called Exponential Linear

Unit (ELU), into our proposed method.
® The proposed model is also improved to detect more road patterns by adding eight different rotated images.
® Excessive detected roads are further be eliminated by applying landscape metrics thresholding.

® The experiments were conducted on Massachusetts roads dataset and compared to the existing road

extraction techniques.

® The results show that the enhanced SegNet outperforms the original one—10.6% for F1—as well as all other

baselines.
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® Conclusion

Future work

®* In future work, more choices of image segmentation techniques, optimization techniques and/or other

activation functions will be investigated and compared to obtain the best DCED-based framework for

semantic road segmentation.
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Experiment (Implementation)

Lasagne (Based Theano): Deep Learning Library (Python)
®* Ubuntu 14.04.5 LTS (Trusty Tahr)

* CUDAT.5

®* CuDNN 5.1

®* Nvidia GeForce GTX 960 (4 GB)

@ python’

gErorce
theano
\ T ——G—aie




Experiment (Implementation)

® The training procedure took approximately 32 hours for the original training datasets.
® 48 hours for the amplified training datasets, and finished after 200 epochs.

®* In each epoch, 576 seconds were used for the original training datasets

® 864 seconds were used for the amplified training datasets.




Experiment (Implementation)

The encoder network consists of convolution layer and pooling layer. A technique, called
batch normalization is used to speed up the learning process of the CNN by reducing
internal covariate shift. In the encoder network, the number of layers is reduced to 13

layers (VGG16) by removing the last three layers (fully connected layers).

To do optimization for training networks, stochastic gradient descent (SGD) with a fixed learning
rate of 0.1 and momentum of 0.9 are used. In each training round (epoch), a mini-batch (a set of

12 images) is chosen such that each image is used once. The model with the best performance on

the validation dataset in each epoch will be selected.

Pooling Indices

I Convolution + Batch Normalization + ELU [ ] Softmax
I Pooling B Upsampling

81




Experiment (Implementation)

®* The encoder network consists of convolution layer and pooling layer. A technique, called batch

normalization is used to speed up the learning process of the CNN by reducing internal covariate
shift. In the encoder network, the number of layers is reduced to 13 layers (VGG16) by removing
the last three layers (fully connected layers).

®* To do optimization for training networks, stochastic gradient descent (SGD) with a fixed

learning rate of 0.1 and momentum of 0.9 are used. In each training round (epoch), a mini-

batch (a set of 12 images) is chosen such that each image is used once. The model with the

best performance on the validation dataset in each epoch will be selected.




¢ Statement of the problems

Statement of the problems

® Deep Learning Problem

® False Positive Problem

FP
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¢ Statement of the problems

Statement of the problems

® Deep Learning Problem

®* False Negative Problem

FN

.

FN e

i
|

S Satellite Image

84



Theory

® Semantic Segmentation

® Neural Network

® Convolution Neural Network
® Connected Component

® Gaussian Smoothing

® Performance Evaluation
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Theory

® Semantic Segmentation
® Neural Network

® Convolution Neural Network
building

® Connected Component
car

® Gaussian Smoothing

® Performance Evaluation

Reference : http://stackoverflow.com/questions/33947823/what-is-semantic-segmentation-compared-to-segmentation-and-scene-labeling



® Theory

Theory

® Semantic Segmentation
® Neural Network
® Convolution Neural Network

® Connected Component

® Gaussian Smoothing

1¢t Layer 2"d Layer 3" Layer
® Performance Evaluation (input layer) (hidden layer)  (output layer)

w{uh,m

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)



® Theory

Theory

® Semantic Segmentation

® Neural Network

Convolution Neural Network
® Connected Component

® Gaussian Smoothing

®  Performance Evaluation

‘v
% é;‘}&”é;‘k\g‘,
P/

Deep Neural Network

eference : Adit Deshpande, CS Undergrad at UCLA ('19)




® Theory

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

®*  OQverview (1) 32x32 b@28x28 S2:f. ma
6@14x1

® Qverview (2)

® Convolution Layer

Full conAection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

® Deconvolution Layer
® Pooling Layer

®* Unpooling Layer

® Fully Connected Layer

® Classification Layer

Feature Extraction [ i | 89

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)



Convolution Neural Network

® Qverview (1)

Feature Extraction

® Qverview (2)

®* Convolution Layer

® Deconvolution Layer

® Pooling Layer

®* Unpooling Layer

® Fully Connected Layer

® Classification Layer

Pixel-wise Classification
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® Theory

® Qverview (1) H Convolve with ’0 Threshold g iy
to o =

® Qverview (2)

® Convolution Layer -

® Deconvolution Layer

® Pooling Layer

®* Unpooling Layer

® Fully Connected Layer

® Classification Layer

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)



Convolution Neural Network

®* Overview (1)

®* Overview (2)

® Convolution Layer

® Deconvolution Layer

® Pooling Layer

®* Unpooling Layer
® Fully Connected Layer Convolution Deconvolution

® Classification Layer

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)



Convolution Neural Network

® Qverview (1)

* Overview (2) Single depth slice
A
®* Convolution Layer X 1 1 2 4
. max pool with 2x2 filters

® Deconvolution Layer 5 6 7 8 and stride 2 6 8
* Pooling Layer >

3 | 2 i 3|4
®* Unpooling Layer
® Fully Connected Layer 1 2 3 4

\

® Classification Layer

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)



Convolution Neural Network

Overview (1)
® Qverview (2)

® Convolution Layer

® Deconvolution Layer switch
variables g Q ;“,‘;";f;{,‘,es
®* Pooling Layer M \

. pooled input
® Unpooling Layer R map
p g Lay —
i unpooled
map

Fully Connected Lay: Pooling Unpooling

® Classification Layer

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)



Convolution Neural Network

® Qverview (1)

® Qverview (2)

® Convolution Layer

® Deconvolution Layer B
. 718 P X P { 7 Number of
® Pooling Layer ra :
12| 4 I ) Class
®* Unpooling Layer v
5 111
®* Fully Connected Layer

® Classification Layer

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)



® Theory

Convolution Neural Network

* OQverview (1)

* OQverview (2)

®* Convolution Layer

® Deconvolution Layer
® Pooling Layer

®* Unpooling Layer

® Fully Connected Layer

® Classification Layer

Softmax Function

w/ o
w,
X — Ply=2)
N

Py=3)

Py=1)+P(y=2)+P(y=3) = 1

_ L &Xp(wyx)
PO=1 i=1 exp(wy, - x)
exp(w; * X)
Py=2= Yi=1eXp(Wy - X)
by 3y - PO )

Zl?;=1 exp(wy - x)

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)




®* Theory

Theory

® Connected Component

Example: Connected-Component Labeling

https://en.wikipedia.org/wiki/Connected-component_labeling
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Theory

® Semantic Segmentation

® Neural Network

® Convolution Neural Network
® Connected Component

® Gaussian Smoothing

® Performance Evaluation

S, i =1(0,j)*G(i,j,0)

http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

Si,j is output
I(i,j) is a finding edge in image
G(i,j, O') is Gaussian function




Theory

Semantic Segmentation

Actual I

® Neural Network I

® Convolution Neural Network

® Connected Component

Predicted

® Gaussian Smoothing

Performance Evaluation

orecision — TP
recision = TP = P

Recall = — &

A = TP EN

Fl, = 2XPrecisionxRecall
" Precision + Recall
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®* Theory

Deep Learning Research

(69] (h) 6]
Figure 4. Visualization of activations in our deconvolution network. The activation maps from (b) to (j) correspond to the output maps from
lower to higher layers in the deconvolution network. We select the most representative activation in each layer for effective visualization.
The image in (a) is an input, and the rest are the outputs from (b) the last 14 x 14 deconvolutional layer, (c) the 28 x 28 unpooling layer,
(d) the last 28 x 28 deconvolutional layer, (e) the 56 x 56 unpooling layer, (f) the last 56 x 56 deconvolutional layer, (g) the 112 x 112
unpooling layer, (h) the last 112 x 112 deconvolutional layer, (i) the 224 x 224 unpooling layer and (j) the last 224 x 224 deconvolutional
layer. The finer details of the object are revealed, as the features are forward-propagated through the layers in the deconvolution network.
Note that noisy activations from background are suppressed through propagation while the activations closely related to the target classes
are amplified. It shows that the learned filters in higher deconvolutional layers tend to capture class-specific shape information.

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)
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®* (Clevert (2016)
The exponential linear unit (ELU) with 0 < v is

T ifz >0 , 1 ifz >0
f(@) = {a(exp(x)—l) ifz <0 ’ fiz) = {f(a:)+a ifx <0~

2 10°
(B — elu
—LRelLU . o
—RelLU
S —— leaky
1- ==SRelLU ;l 101
[oX
= S
& =
- ]
0- é 100
o
101
- , , ‘ ] 0 50 100 150 200
-10.0 75 -5.0 25 0.0 epoch

® The Rectified linear unit (ReLU), the leaky RelLU (LRelLU, alpha = 0.1), the shifted RelLUs (SReLUs),
and the exponential linear unit (ELU, alpha = 1.0).

Clevert et al, “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs),” In ICLR, 2016.
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popularity activation function

4

Sigmoid TanH RelLU

10
0 for z<0

8 —

] f(=) {z for z>0

4

2
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02 4 2 o 2 4 R —— 2 4 6 6 -4 2 0 2 4 6

Clevert et al, “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs),” In ICLR, 2016.
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*Sigmoid 075
*Tanh
*Rectified linear unit (ReLU): f(x) = max(0, x)
. 0.5 4
> Become very popular in the last few years. £
-
]
10 g’ R e -—
£ =
sf ® 0.25- >~
= Tanh
6
+F
5 0 v ; . r . r .
0 5 10 15 20 25 30 35 40
1o = > 10 Epochs

[http://cs231n.github.io/convolutional-networks/]

Clevert et al, “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs),” In ICLR, 2016.
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How does ELU activation function help convergence, and what's its advantages over RelLU or

sigmoid or tanh function?

Saiprasad Koturwar, studied at Indian Institute of Technology, Bombay
Written Sep 15

ELU(Exponential linear unit) function takes care of the Vanishing gradient problem. The
other mentioned activation functions are prone to reaching a point from where the gradient
of the functions does not change.

Lets start with the advantages that relu gives over sigmoid and tanh (tanh and sigmoid are
simailar) so if you look at the following plot sigmoid/tanh gets saturated for large values of
X, SO as your activation value increases the corresponding gradient approaches zero and the
corrosponding neurons effectively learn nothing. But with relu you do not have that
problem as you will get finite gradient no matter what the value of x.

Sigmoid
¥ 1 ¥

lincar

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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But the problem with relu is that it’s mean is not zero. If the mean value of activation is zero
you get a faster learning.But if you use just a linear activation function (which would have
mean activation zero) your overall network becomes linear and which will effectively be
equal to a single layer network and with linear networks there is very little that you can
learn from the data, that’s why we use non linear activation functions. Now what ELU does
is that it tries to make the mean activation close to zero and as it is an exponential function
it does not saturate(I have not used this activation function yet), you can conclude this from
ELU graph.

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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How does softmax function work in Al field?

Steven Schmatz, studying machine learning
Written Jul 31, 2014 - Upvoted by Nikhil Dandekar, worked on machine learning at Microsoft,
Foursquare and Quora and Jay Verkuilen

The softmax function is important in the field of machine learning because it can map
avector to a probability of a given output in binary classification.

The softmax (logistic) function is defined as:

1
~ 1+ oxp(—07z)’

ho(z)

where @ represents a vector of weights, and x is a vector of input values. This function is
used to approximate a target function y € {0, 1} in binary classification. The softmax
function produces a scalar output Ag(x) € R, 0 < hg(x) < 1.

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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This can be seen as the confidence that your test point has an output value of 1. When —67 x
is very small, then the probability y = 1 is small. When —6” x is very large, hg(x)
approaches 1 as the probability that y = 1 approaches 100%.

Note that this is also widely used in artificial neural network design, as the "activation
function" of each neuron. Each neuron receives a vector of outputs from other neurons that
fired, each axon with its own weighting. These are then linearly combined and used in the
softmax function to determine if the next neuron fires or not.

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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Why is it better to use Softmax function than sigmoid function?

Sri Krishna, Works on Deep learning for vision. BITSian.

Written Oct 21
I'm guessing you're asking only wrt the last layer for classification, in general Softmax is
used (Softmax Classifier) when ‘n’ number of classes are there. Sigmoid or softmax both can
be used for binary (n=2) classification.

Sigmoid:
S(t) = 1+1e~t
Softmax:

1
" 1+ exp(—0Tz)’

Softmax is kind of Multi Class Sigmoid, but if you see the function of Softmax, the sum of all
softmax units are supposed to be 1. In sigmoid it’s not really necessary.

ho(z)

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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Digging deep, you can also use sigmoid for multi-class classification. When you use a
softmax, basically you get a probability of each class, (join distribution and a
multinomial likelihood) whose sum is bound to be one. In case you use sigmoid for multi
class classification, it'd be like a marginal distribution and a Bernoulli likelihood,

p(y0/x), p(yl/x) etc

As told earlier, in the case of softmax, increasing the output value of one class makes the
the others go down (sigma=1). So, sigmoids can probably be preferred over softmax when
your outputs are independent of one another. To put it more simple, if there are multiple
classes and each input can belong to exactly one class, then it absolutely makes sense to
use softmax, in the other cases, sigmoid seems better.

One more thing is, people mostly use ReLu activations these days (in the hidden layers) and
using sigmoid blows up ReLu apparently, might be one of the reason why people prefer
softmax.

PS - In case you’re talking about activation functions in hidden layers, softmax isn’t really
used. And ReLu is better to use than sigmoid.

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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What is difference between SVM and Neural Networks?

,' . Kaushik Kasi, (Data Science && Bitcoin) Enthusiast x,

\ Written Apr 12, 2015
SVM and NN are both supervised learning methods, but they work a bit differently. As
Eren mentioned, in theory they may not be that different from each other.

Support Vector Machine

SVM fits a hyperplane/function between 2 different classes given a maximum margin
parameter. This hyperplane attempts to separate the classes so that each falls on
either side of the plane, and by a specified margin. There is a specific cost function for
this kind of model which adjusts the plane until error is minimized.

Neural Network

A neural network has several input, hidden, and output nodes. Each node applies a
function some data (could be softmax, linear, logistic), and returns an output. Every
node in the proceeding layer takes a weighted average of the outputs of the previous
layer, until an output is reached. The reasoning is that multiple nodes can collectively
gain insight about solving a problem (like classification) that an individual node
cannot. The cost function differs for this type of model -- the weights between nodes
adjust to minimize error.

A Typical Neural Network

Input

Outpul:
Input
Outpul:
Input
Qutput Layer
Input

Hiden Layer

Inputh Layer
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Road network extraction: a neural-dynamic framework based on deep

learning and a finite state machine International Journal of Remote Sensing, 2015 e Taylor & Francis
i Vol. 36, No. 12, 31443169, http://dx.doi.org/10.1080/01431161.2015.1054049 Taylor & Francis Group
Jun Wang™*, Jingwei Song®, Mingquan Chen”, and Zhi Yang®

(2) Learning-based methods.

Road extraction from imagery is actually a classification problem (Mnih 2013; Singh
and Garg 2014). Features can be extracted and trained by many machine leaming
algorithms, e.g. neural networks and support vector machine (SVM) (Huang and Zhang
2009). However, due to lack of labelled samples and the complexity of road features, it is
hard to make the most of the power in modern classifiers.

Barsi and Heipke (2003) proposed a road junction detector by training a neural network
on a training data set of 542 junction and non-junction samples. Spectral and structural
features at different scales are extracted and trained in several SVMs (Huang and Zhang
2009). The results of spectral and structural classification are integrated by applying a fusion
method of majority voting. Principal component analysis (PCA) is applied to reduce the
dimensionality of the input image patch, in this way large context can be used in training
(Mnih and Hinton 2010; Mnih 2013). An unsupervised learning procedure was utilized for
pretraining, before the restricted Boltzmann machines were trained with complicate large
challenging urban data sets. These methods that leam to predict whether the objects are
roads prove that it is very arduous because of the complexity of the surface.

Considering these deficiencies, the authors propose a semi-automatic neural-dynamic
tracking framework based on deep convolutional neural networks (DNNs) and finite state
machine (FSM). The framework consists of two processing steps: the training step and the
tracking step.
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®* Normalization om each channel of satellite image.

® R G B [ [0,255] [Oa255] [Oa255] ] => [ [_1, 1): [_19 1), [_1, 1) ]
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® Normalization on one channel of target image.

®* Gray [0,255] => {0,1}
Reference : https://classroom.udacity.com/courses/ud730/lessons/6370362152/concepts/71191606550923 113
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(C1) 4 feature maps (52) 6 feature maps (C2) 6 feature maps
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Softmax

* Generalization of the logistic function
- Squashes the inputs to the [0 1] range

Logistic function: o (z)

Softmax function: o (z),=

In mathematics, the softmax function, or normalized exponential function,['1:198 is a generalization of the logistic function that "squashes" a K-dimensional vector z of arbitrary real values
to a K-dimensional vector o(z) of real values in the range (0, 1) that add up to 1. The function is given by
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