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Introduction

• Object classification from images is among the many practical examples where deep 

learning algorithms have successfully been applied. 

• In our work, we present an improved deep convolutional encoder-decoder network (DCED) with 

Landscape metrics for segmenting road objects from aerial images. 

• The most recent DCED approach for object segmentation, namely SegNet, is used as one of the 

benchmarks in evaluating our method. 

• The experiments were conducted on a well-known aerial imagery, Massachusetts roads dataset.

• Introduction
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Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation." PAMI, 2017. 
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(1) Deep Learning for Semantic Segmentation

• Fully convolutional networks (FCN) was presented by J. Long, E. Shelhamer and T. Darrell. (2015)

• Some of the pooling layers were skipped: layer 3 (FCN-8s), layer 4 (FCN-16s), and layer 5 (FCN-32s).

• Deconvolutional neural network (DeCNN) was proposed by H. Noh et al. (2015)

• Deep convolutional encoder-decoder (DCED) was proposed by V. Badrinarayanan (2015)

• Related Work
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PASCAL VOC Data Sets

• PASCAL VOC is a standard recognition dataset and benchmark with detection and semantic segmentation 

challenges. 

• The semantic segmentation challenge annotates 20 object classes and background.

• (1) Deep Learning for Semantic Segmentation
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(1) Deep Learning for Semantic Segmentation (Results)

• Fully convolutional networks (FCN) was presented by J. Long, E. Shelhamer and T. Darrell. (2015)

• Performance: Accuracy = 59.4 percent (FCN)

• Some of the pooling layers were skipped: layer 3 (FCN-8s), layer 4 (FCN-16s), and layer 5 (FCN-32s).

• Performance: Accuracy = 62.7 percent (FCN-8s) , 62.4 percent (FCN-16s) 

• Deconvolutional neural network (DeCNN) was proposed by H. Noh et al. (2015)

• Performance: Accuracy = 72.5 percent (DeCNN)

• Deep convolutional encoder-decoder (DCED) was proposed by V. Badrinarayanan (2015)

• Performance: Accuracy = 80.1 percent (DCED)

• Related Work
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DCED was given the best performance on PASCAL VOC data set

So, DCED was chosen be our standard 

architecture and baseline
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Related Work

• (1) Deep Learning for Semantic Segmentation

• (2) Deep Learning for Road Segmentation

• (3) Activation Functions in Deep Learning

• Related Work
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Related Work (Standard data set)

• Massachusetts roads dataset (Mass. Roads). (Very high resolution imagery)

• 1500x1500 pixels (Resolution = 1 meter2/pixel)

• Training set = 1108, Validation set = 14, Test set = 49 

• made publicly available on website: https://www.cs.toronto.edu/~vmnih/data/

• Related Work

https://www.cs.toronto.edu/~vmnih/data/
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(2) Deep Learning for Road Segmentation

• S. Saito et al. (2016) use FCN architecture for segmenting road objects on Mass. road data set.

• Performance: F1 = 0.742

• S. Muruganandham (2016) use DeCNN and FCN-8s for segmenting road objects on Mass. Road data 

set.

• Performance: F1 (DeCNN) = 0.657

• Performance: F1 (FCN-8s) = 0.762

• Related Work
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• Performance: F1 (FCN-8s) = 0.762
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FCN FCN-8s and DeCNN were poposed in this task

So, These architecture will be baseline for 

comparison in our work.
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Related Work

• (1) Deep Learning for Semantic Segmentation

• (2) Deep Learning for Road Segmentation

• (3) Activation Functions in Deep Learning

• Related Work
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(3) Activation Functions in Deep Learning

• Clevert et al. (2016) proposed "exponential linear unit" (ELU) which speeds up learning in deep 

neural networks and leads to higher classification accuracies. 

• Training and testing on CIFAR-10 data set, CIFAR-100 sets

• Performance: Error = 6.55 and 24.28

• AlexNet has an error: 18.04 and 45.80, CNN has an error 7.25 and 33.71

• Related Work
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• Performance: Error = 6.55 and 24.28

• AlexNet has an error: 18.04 and 45.80, CNN has an error 7.25 and 33.71

• Related Work

So, ELU-Network is better than 

ReLU-Network
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Methodology
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• Three aspects of the proposed method are enhanced: 

• (1) Modification of DCED architecture. à ELU-DCED

• (2) Data amplification à ELU-DCED-R (**R means Rotate images)

• (3) Adoption of landscape metrics. à ELU-DCED-RL (**L means Landscape Metrics)

• Methodology

Shape	Index =
perimeter
4x area

Perimeter =14, area = 6; shape idx = 1.43 Perimeter 16, area = 16; shape idx = 1.00
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Experiment

• The experiments were conducted on a standard benchmark, “Massachusetts roads dataset” 

(Mass. Roads) 

• Compared our proposed method (ELU-DCED, ELU-DCED-R, ELU-DCED-RL) to four baselines: 

basic-model (CNN), FCN-no-skip, FCN-8s, and SegNet. 

• In terms of precision, recall, and F1 (Performance Evaluations )

• Experiment
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TP denote the number of true positives (the number of correctly classified road pixels), TN denote the number of true negatives (the number of correctly classified non-road pixels), 
FP denote the number of false positives (the number of mistakenly classified road pixels), and FN denote the number of false negatives (the number of mistakenly classified non-road pixels).
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Results

• Results

Model Precision Recall F1

Baseline

Basic-model [2] 0.657 0.657 0.657

FCN-no-skip [2] 0.742 0.742 0.742

FCN-8s [2] 0.762 0.762 0.762

SegNet [6] 0.773 0.765 0.768

Proposed 

Method

ELU-DCED 0.852 0.733 0.788

ELU-DCED-R 0.78 0.847 0.812

ELU-DCED-RL 0.854 0.861 0.857
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Results

Satellite Image Target DCED (Baseline) ELU-DCED ELU-DCED-Rotate
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• Results

Satellite Image Target ELU-DCED-R ELU-DCED-RL



53

Results

• Results

Satellite Image Target ELU-DCED-R ELU-DCED-RL

Using Landscape Metrics (Consider the shape index) 
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• Results

Satellite Image Target ELU-DCED-R ELU-DCED-RL

Using Landscape Metrics (Consider the shape index) 

Extracted roads with removing noises.
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Discussion

• Discussion on Enhanced Deep Learning Framework

• For the effect of ELU, Result shows that the precision of ELU-SegNet is higher than that of the 
original SegNet by 7.9%—without losing recall. This can imply that ELU is more robust than 

ReLU to detect road pixels.

• The result also shows that the recall of ELU-SegNet-R is higher than that of ELU-SegNet by 11.4%, 

meaning that it can detect more patterns of the roads.

• Discussion on Landscape Metrics

• The landscape metrics are applied to our framework in order to remove all inaccurately extracted 

roads (false positives: FP), considered as a negative effect of the rotated image strategy as discussed in 
the previous section. 

• Result shows that the precision of the network is increased by 7.4% by applying the landscape metrics 

filtering. This shows that the FP issue has been resolved.

• Discussin
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Conclusion

• In this work, we present a novel deep learning network framework to extract road objects from aerial 

images. 

• The network is based on Deep Convolutional Encoder-Decoder Network (DCED), called “SegNet.” 

• To improve the network’s precision, we incorporate the recent activation function, called Exponential Linear 
Unit (ELU), into our proposed method. 

• The proposed model is also improved to detect more road patterns by adding eight different rotated images. 

• Excessive detected roads are further be eliminated by applying landscape metrics thresholding. 

• The experiments were conducted on Massachusetts roads dataset and compared to the existing road 

extraction techniques. 

• The results show that the enhanced SegNet outperforms the original one—10.6% for F1—as well as all other 

baselines.

• Conclusion
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Future work

• In future work, more choices of image segmentation techniques, optimization techniques and/or other 

activation functions will be investigated and compared to obtain the best DCED-based framework for 
semantic road segmentation.

• Conclusion
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Experiment (Implementation)

• Lasagne (Based Theano): Deep Learning Library (Python)

• Ubuntu 14.04.5 LTS (Trusty Tahr)

• CUDA 7.5

• CuDNN 5.1

• Nvidia GeForce GTX 960 (4 GB)

• Experiment
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Experiment (Implementation)

• The training procedure took approximately 32 hours for the original training datasets. 

• 48 hours for the amplified training datasets, and finished after 200 epochs. 

• In each epoch, 576 seconds were used for the original training datasets 

• 864 seconds were used for the amplified training datasets.

• Experiment
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Experiment (Implementation)

• The encoder network consists of convolution layer and pooling layer. A technique, called 

batch normalization is used to speed up the learning process of the CNN by reducing 

internal covariate shift. In the encoder network, the number of layers is reduced to 13 

layers (VGG16) by removing the last three layers (fully connected layers).

• To do optimization for training networks, stochastic gradient descent (SGD) with a fixed learning 

rate of 0.1 and momentum of 0.9 are used. In each training round (epoch), a mini-batch (a set of 

12 images) is chosen such that each image is used once. The model with the best performance on 

the validation dataset in each epoch will be selected. 

• Experiment
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• The encoder network consists of convolution layer and pooling layer. A technique, called batch 

normalization is used to speed up the learning process of the CNN by reducing internal covariate 

shift. In the encoder network, the number of layers is reduced to 13 layers (VGG16) by removing 

the last three layers (fully connected layers).

• To do optimization for training networks, stochastic gradient descent (SGD) with a fixed 

learning rate of 0.1 and momentum of 0.9 are used. In each training round (epoch), a mini-

batch (a set of 12 images) is chosen such that each image is used once. The model with the 

best performance on the validation dataset in each epoch will be selected. 

• Experiment
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Statement of the problems

• Deep Learning Problem

• False Positive Problem

• False Negative Problem

• Statement of the problems

FP

Satellite Image Output
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Statement of the problems

• Deep Learning Problem

• False Positive Problem

• False Negative Problem

• Statement of the problems

FN

FN

Satellite Image Output
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Theory

• Semantic Segmentation

• Neural Network

• Convolution Neural Network

• Connected Component

• Gaussian Smoothing

• Performance Evaluation

• Theory



86

Theory

• Semantic Segmentation

• Neural Network

• Convolution Neural Network

• Connected Component

• Gaussian Smoothing

• Performance Evaluation

• Theory

Image A Image CImage B

Reference : http://stackoverflow.com/questions/33947823/what-is-semantic-segmentation-compared-to-segmentation-and-scene-labeling
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Theory

• Semantic Segmentation

• Neural Network

• Convolution Neural Network

• Connected Component

• Gaussian Smoothing

• Performance Evaluation

• Theory

𝑎!" = 𝑔(∑#	%	&' 𝑤!#" 𝑥#"(& + 𝑏!")

Reference : Adit Deshpande, CS Undergrad at UCLA ('19) 
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Theory

• Semantic Segmentation

• Neural Network

• Convolution Neural Network

• Connected Component

• Gaussian Smoothing

• Performance Evaluation

• Theory

Deep Neural Network

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)
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Convolution Neural Network 

• Overview (1)

• Overview (2)

• Convolution Layer

• Deconvolution Layer

• Pooling Layer

• Unpooling Layer

• Fully Connected Layer

• Classification Layer

• Theory

Data Feature Extraction FC Classification

In CNN architecture shared weight together

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)

A
B

C
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Convolution Neural Network

• Overview (1)

• Overview (2)

• Convolution Layer

• Deconvolution Layer

• Pooling Layer

• Unpooling Layer

• Fully Connected Layer

• Classification Layer

• Theory

Feature ExtractionData

FC Classification

Pixel-wise Classification
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Convolution Neural Network

• Overview (1)

• Overview (2)

• Convolution Layer

• Deconvolution Layer

• Pooling Layer

• Unpooling Layer

• Fully Connected Layer

• Classification Layer

• Theory

w13w12w11

w23w22w21

w33w32w31

w13w12w11

w23w22w21

w33w32w31

Input

ReLU is the most interesting

Output

Activation Function

Reference : Adit Deshpande, CS Undergrad at UCLA ('19) 
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Convolution Neural Network

• Overview (1)

• Overview (2)

• Convolution Layer

• Deconvolution Layer

• Pooling Layer

• Unpooling Layer

• Fully Connected Layer

• Classification Layer

• Theory

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)  
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Convolution Neural Network

• Overview (1)

• Overview (2)

• Convolution Layer

• Deconvolution Layer

• Pooling Layer

• Unpooling Layer

• Fully Connected Layer

• Classification Layer

• Theory

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)  



94

Convolution Neural Network

• Overview (1)

• Overview (2)

• Convolution Layer

• Deconvolution Layer

• Pooling Layer

• Unpooling Layer

• Fully Connected Layer

• Classification Layer

• Theory

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)  
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Convolution Neural Network

• Overview (1)

• Overview (2)

• Convolution Layer

• Deconvolution Layer

• Pooling Layer

• Unpooling Layer

• Fully Connected Layer

• Classification Layer

• Theory

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)  

Number of 

Class
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Convolution Neural Network

• Overview (1)

• Overview (2)

• Convolution Layer

• Deconvolution Layer

• Pooling Layer

• Unpooling Layer

• Fully Connected Layer

• Classification Layer

• Theory

Softmax Function

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)  
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Theory

• Semantic Segmentation

• Neural Network

• Convolution Neural Network

• Connected Component

• Gaussian Smoothing

• Performance Evaluation

• Theory

4 Point 8 Point

Example: Connected-Component Labeling

https://en.wikipedia.org/wiki/Connected-component_labeling
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Theory

• Semantic Segmentation

• Neural Network

• Convolution Neural Network

• Connected Component

• Gaussian Smoothing

• Performance Evaluation

• Theory

!𝑆!,# = 𝐼 𝑖, 𝑗 ∗ 𝐺(𝑖, 𝑗, 𝜎
𝑆!,# is output

𝐼 𝑖, 𝑗   is a finding edge in image

𝐺 𝑖, 𝑗, 𝜎 	is Gaussian function

ภาพ A ภาพ Cภาพ B

http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm



99

Theory

• Semantic Segmentation

• Neural Network

• Convolution Neural Network

• Connected Component

• Gaussian Smoothing

• Performance Evaluation

• Theory
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Thank you

Teerapong panboonyuen
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Deep Learning Research

• Theory

Reference : Adit Deshpande, CS Undergrad at UCLA ('19)  
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Deep Learning Research

• Theory

Clevert et al, “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs),” In ICLR, 2016.

• Clevert (2016)

• The Rectified linear unit (ReLU), the leaky ReLU (LReLU, alpha = 0.1), the shifted ReLUs (SReLUs), 

       and the exponential linear unit (ELU, alpha = 1.0).
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Deep Learning Research

• งานวิจัยท่ีเกี่ยวขRอง

Clevert et al, “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs),” In ICLR, 2016.

popularity activation function
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Deep Learning Research

• Theory

Clevert et al, “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs),” In ICLR, 2016.
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Deep Learning Research

• Theory

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function

How does ELU activation function help convergence, and what's its advantages over ReLU or 
sigmoid or tanh function?
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Deep Learning Research

• Theory

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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Deep Learning Research

• Theory

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function

How does softmax function work in AI field?
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Deep Learning Research

• Theory

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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Deep Learning Research

• Theory

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function

Why is it better to use Softmax function than sigmoid function?
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Deep Learning Research

• Theory

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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Deep Learning Research

• Theory

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function

What is difference between SVM and Neural Networks?
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Deep Learning Research

• Theory

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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Deep Learning Research

• Normalization om each channel of satellite image.

• R G B [ [0,255] [0,255] [0,255] ] => [ [-1, 1), [-1, 1), [-1, 1) ]

• Normalization on one channel of target image.

• Gray [0,255] => {0,1}

• Theory

Reference : https://classroom.udacity.com/courses/ud730/lessons/6370362152/concepts/71191606550923
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Deep Learning Research

• Theory

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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Deep Learning Research

• Theory

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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Deep Learning Research

• Theory

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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Deep Learning Research

• Theory

https://www.quora.com/How-does-ELU-activation-function-help-convergence-and-whats-its-advantages-over-ReLU-or-sigmoid-or-tanh-function
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