🚦 AI-Powered Image Recognition for Transportation Mobility Factors

A Quality of Life Perspective for Bangkok City

MIT License
Author: Teerapong Panboonyuen (Kao Panboonyuen)
GitHub Code | Project Page | IEEE Publication

πŸŽ–οΈ Achievements

πŸ“„ Abstract

Urban development hinges on improving the Quality of Life (QOL) for city inhabitants. Traditionally, QOL assessments rely heavily on questionnaire surveys, which, while informative, can be costly and time-consuming. Leveraging the rapid advancements in Artificial Intelligence, this work introduces an innovative approach to automatically extract mobility indicatorsβ€”key components of QOL evaluationsβ€”using Semantic Segmentation and Object Recognition techniques. Our method not only enhances the accuracy of transportation mobility assessments but also significantly reduces the data collection costs associated with QOL evaluations.

🌟 Highlights

πŸ–ΌοΈ Image Reference

Source: Bangkok Garden

Bangkok Garden 1 Bangkok Garden 2

πŸš€ Getting Started

πŸ“₯ Installation

git clone https://github.com/kaopanboonyuen/QOL-TransportAI.git
cd QOL-TransportAI
pip install -r requirements.txt

βš™οΈ Configuration

Edit config.yaml to suit your dataset.

πŸ“Š Usage

  1. Preprocessing:
    python preprocess.py --data_path /path/to/data --output_path /path/to/output
  2. Training:
    python train.py --config config.yaml
  3. Evaluation:
    python evaluate.py --model_path /path/to/model --test_data /path/to/test_data
  4. Inference:
    python inference.py --image_path /path/to/image.png --output_path /path/to/output.png

πŸ—‚οΈ Project Structure

TransportationMobilityFactorExtraction/
β”œβ”€β”€ data/               # Datasets and preprocessing scripts
β”œβ”€β”€ models/             # Model architectures and training scripts
β”œβ”€β”€ config.yaml         # Configuration file
β”œβ”€β”€ train.py            # Training script
β”œβ”€β”€ evaluate.py         # Evaluation script
β”œβ”€β”€ inference.py        # Inference script
└── README.md           # Project documentation

πŸ“Œ Citation

@inproceedings{kijsirikul2019transportation,
  title={Transportation mobility factor extraction using image recognition techniques},
  author={Kijsirikul, Boonserm and Panboonyuen, Teerapong and Iwahori, Yuji and Hayashi, Yoshitsugu and Vateekul, Peerapon and Achariyaviriya, Witsarut},
  booktitle={2019 First International Conference on Smart Technology \& Urban Development (STUD)},
  pages={1--7},
  year={2019},
  organization={IEEE}
}

πŸ›‘ License

This project is licensed under the MIT License. See the LICENSE file for details.

πŸ‘ Acknowledgments

This project was made possible by the contributions of our dedicated team and the support of the research community. Special thanks to the STUD 2019 reviewers for their feedback.